The regeneration of paired appendages in certain fish and amphibian lineages is a well established and extensively studied regenerative phenomenon. The teleost fin is comprised of a proximal endoskeletal part (considered homologous to the Tetrapod limb) and a distal exoskeletal one, and these two parts form their bony elements through different ossification processes. In the past decade, a significant body of literature has been generated about the biology of exoskeletal regeneration in zebrafish. However, it is still not clear if this knowledge can be applied to the regeneration of endoskeletal parts. To address this question, we decided to compare endo- and exoskeletal regenerative capacity in zebrafish (Danio rerio) and mudskippers (Periophthalmus barbarous). In contrast to the reduced endoskeleton of zebrafish, Periophthalmus has well developed pectoral fins with a large and easily accessible endoskeleton. We performed exo- and endoskeletal amputations in both species and followed the regenerative processes. Unlike the almost flawless exoskeletal regeneration observed in zebrafish, regeneration following endoskeletal amputation is often impaired in this species. This difference is even more pronounced in Periophthalmus where we could observe no regeneration in endoskeletal structures. Therefore, regeneration is regulated differentially in the exo- and endoskeleton of teleost species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
hi@scite.ai
334 Leonard St
Brooklyn, NY 11211
Copyright © 2023 scite Inc. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.