JNJ-42756493 administered at 10 mg on a 7-days-on/7-days-off schedule achieved exposures at which clinical responses were observed, demonstrated pharmacodynamic biomarker activity, and had a manageable safety profile.
Purpose Oncogenic fusions consisting of FGFR and TACC are present in a subgroup of glioblastoma (GBM) and other human cancers and have been proposed as new therapeutic targets. We analyzed frequency, molecular features of FGFR-TACC fusions, and explored the therapeutic efficacy of inhibiting FGFR kinase in GBM and grade-II–III glioma. Experimental Design Overall, 795 gliomas (584 GBM, 85 grade-II–III with wild-type and 126 with IDH1/2 mutation) were screened for FGFR-TACC breakpoints and associated molecular profile. We also analyzed expression of the FGFR3 and TACC3 components of the fusions. The effects of the specific FGFR inhibitor JNJ-42756493 for FGFR3-TACC3-positive glioma were determined in preclinical experiments. Two patients with advanced FGFR3-TACC3-positive GBM received JNJ-42756493 and were assessed for therapeutic response. Results Three of 85 IDH1/2 wild type (3.5%) but none of 126 IDH1/2 mutant grade-II–III glioma harbored FGFR3-TACC3 fusions. FGFR-TACC rearrangements were present in 17 of 584 GBM (2.9%). FGFR3-TACC3 fusions were associated with strong and homogeneous FGFR3 immunostaining. They are mutually exclusive with IDH1/2 mutations and EGFR amplification whereas co-occur with CDK4 amplification. JNJ-42756493 inhibited growth of glioma cells harboring FGFR3-TACC3 in vitro and in vivo. The two patients with FGFR3-TACC3 rearrangements who received JNJ-42756493 manifested clinical improvement with stable disease and minor response, respectively. Conclusions RT-PCR-sequencing is a sensitive and specific method to identify FGFR-TACC-positive patients. FGFR3-TACC3 fusions are associated with uniform intra-tumor expression of the fusion protein. The clinical response observed in the FGFR3-TACC3-positive patients treated with a FGFR inhibitor supports clinical studies of FGFR inhibition in FGFR-TACC-positive patients.
disease (AD) is important for clinical management and affords the opportunity to assess potential disease-modifying agents in clinical trials. To our knowledge, this is the first report of a randomized trial to prospectively enrich a study population with prodromal AD (PDAD) defined by cerebrospinal fluid (CSF) biomarker criteria and mild cognitive impairment (MCI) symptoms. OBJECTIVES To assess the safety of the γ-secretase inhibitor avagacestat in PDAD and to determine whether CSF biomarkers can identify this patient population prior to clinical diagnosis of dementia. DESIGN, SETTING, AND PARTICIPANTS A randomized, placebo-controlled phase 2 clinical trial with a parallel, untreated, nonrandomized observational cohort of CSF biomarker-negative participants was conducted May 26, 2009, to July 9, 2013, in a multicenter global population. Of 1358 outpatients screened, 263 met MCI and CSF biomarker criteria for randomization into the treatment phase. One hundred two observational cohort participants who met MCI criteria but were CSF biomarker-negative were observed during the same study period to evaluate biomarker assay sensitivity. INTERVENTIONS Oral avagacestat or placebo daily. MAIN OUTCOMES AND MEASURE Safety and tolerability of avagacestat. RESULTS Of the 263 participants in the treatment phase, 132 were randomized to avagacestat and 131 to placebo; an additional 102 participants were observed in an untreated observational cohort. Avagacestat was relatively well tolerated with low discontinuation rates (19.6%) at a dose of 50 mg/d, whereas the dose of 125 mg/d had higher discontinuation rates (43%), primarily attributable to gastrointestinal tract adverse events. Increases in nonmelanoma skin cancer and nonprogressive, reversible renal tubule effects were observed with avagacestat. Serious adverse event rates were higher with avagacestat (49 participants [37.1%]) vs placebo (31 [23.7%]), attributable to the higher incidence of nonmelanoma skin cancer. At 2 years, progression to dementia was more frequent in the PDAD cohort (30.7%) vs the observational cohort (6.5%). Brain atrophy rate in PDAD participants was approximately double that of the observational cohort. Concordance between abnormal amyloid burden on positron emission tomography and pathologic CSF was approximately 87% (κ = 0.68; 95% CI, 0.48-0.87). No significant treatment differences were observed in the avagacestat vs placebo arm in key clinical outcome measures. CONCLUSIONS AND RELEVANCE Avagacestat did not demonstrate efficacy and was associated with adverse dose-limiting effects. This PDAD population receiving avagacestat or placebo had higher rates of clinical progression to dementia and greater brain atrophy compared with CSF biomarker-negative participants. The CSF biomarkers and amyloid positron emission tomography imaging were correlated, suggesting that either modality could be used to confirm the presence of cerebral amyloidopathy and identify PDAD. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00890890
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.