Yolk-shell composites with a movable Fe(x)O(y) core and mesoporous SiO2 (mSiO2) shell, together with Pd nanoparticles uniformly anchoring on the inner surface, were prepared. The structure and composition of as-prepared catalysts were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller measurement and Fourier-transform infrared spectroscopy, respectively. They are ideal candidates as nanoreactors for heterogeneous catalysis due to their special structure. The catalytic performance of Fe(x)O(y)/Pd@mSiO2 composites was studied by the reduction of 4-nitrophenol with NaBH4 as a reducing agent. Their reaction rate constant was calculated according to the pseudo-first-order reaction equation. The catalysts could be easily recycled by an external magnetic field due to their superparamagnetic property. Besides good catalytic property, another merit of Fe(x)O(y)/Pd@mSiO2 composites was high stability. We have compared the stability between Fe(x)O(y)/Pd@mSiO2 and Fe3O4@C/Pd composites by ultrasonic treatment and HNO3 solution etching, the stability of the former was much better than the later.
A mechanically robust superhydrophobic coating was facilely prepared based on bi-component acrylic polyurethane and fluoroalkyl silane modified silicas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.