Multi-fingered hands could be used to achieve many dexterous manipulation tasks, similarly to humans, and tactile sensing could enhance the manipulation stability for a variety of objects. However, tactile sensors on multi-fingered hands have a variety of sizes and shapes. Convolutional neural networks (CNN) can be useful for processing tactile information, but the information from multi-fingered hands needs an arbitrary pre-processing, as CNNs require a rectangularly shaped input, which may lead to unstable results. Therefore, how to process such complex shaped tactile information and utilize it for achieving manipulation skills is still an open issue. This paper presents a control method based on a graph convolutional network (GCN) which extracts geodesical features from the tactile data with complicated sensor alignments. Moreover, object property labels are provided to the GCN to adjust in-hand manipulation motions. Distributed tri-axial tactile sensors are mounted on the fingertips, finger phalanges and palm of an Allegro hand, resulting in 1152 tactile measurements. Training data is collected with a data-glove to transfer human dexterous manipulation directly to the robot hand. The GCN achieved high success rates for in-hand manipulation. We also confirmed that fragile objects were deformed less when correct object labels were provided to the GCN. When visualizing the activation of the GCN with a PCA, we verified that the network acquired geodesical features. Our method achieved stable manipulation even when an experimenter pulled a grasped object and for untrained objects. A Project page including accompanying video and supplementary materials can be found at https://sites.google.com/site/bashifunabashi/multifinger-project/in-hand-manipulation
Multifingered robot hands can be extremely effective in physically exploring and recognizing objects, especially if they are extensively covered with distributed tactile sensors. Convolutional neural networks (CNNs) have been proven successful in processing high dimensional data, such as camera images, and are, therefore, very well suited to analyze distributed tactile information as well. However, a major challenge is to organize tactile inputs coming from different locations on the hand in a coherent structure that could leverage the computational properties of the CNN. Therefore, we introduce a morphology-specific CNN (MS-CNN), in which hierarchical convolutional layers are formed following the physical configuration of the tactile sensors on the robot. We equipped a four-fingered Allegro robot hand with several uSkin tactile sensors; overall, the hand is covered with 240 sensitive elements, each one measuring three-axis contact force. The MS-CNN layers process the tactile data hierarchically: at the level of small local clusters first, then each finger, and then the entire hand. We show experimentally that, after training, the robot hand can successfully recognize objects by a single touch, with a recognition rate of over 95%. Interestingly, the learned MS-CNN representation transfers well to novel tasks: by adding a limited amount of data about new objects, the network can recognize nine types of physical properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.