The occurrence of cognitive disturbances upon CNS inflammation or infection has been correlated with increased levels of the cytokine tumor necrosis factor-α (TNFα). To date, however, no specific mechanism via which this cytokine could alter cognitive circuits has been demonstrated. Here, we show that local increase of TNFα in the hippocampal dentate gyrus activates astrocyte TNF receptor type 1 (TNFR1), which in turn triggers an astrocyte-neuron signaling cascade that results in persistent functional modification of hippocampal excitatory synapses. Astrocytic TNFR1 signaling is necessary for the hippocampal synaptic alteration and contextual learning-memory impairment observed in experimental autoimmune encephalitis (EAE), an animal model of multiple sclerosis (MS). This process may contribute to the pathogenesis of cognitive disturbances in MS, as well as in other CNS conditions accompanied by inflammatory states or infections.
Homeostatically regulated slow-wave oscillations in non-rapid eye movement (REM) sleep may reflect synaptic changes across the sleep-wake continuum and the restorative function of sleep. The nonsynonymous c.22G>A polymorphism (rs73598374) of adenosine deaminase (ADA) reduces the conversion of adenosine to inosine and predicts baseline differences in sleep slow-wave oscillations. We hypothesized that this polymorphism affects cognitive functions, and investigated whether it modulates electroencephalogram (EEG), behavioral, subjective, and biochemical responses to sleep deprivation. Attention, learning, memory, and executive functioning were quantified in healthy adults. Right-handed carriers of the variant allele (G/A genotype, n = 29) performed worse on the d2 attention task than G/G homozygotes (n = 191). To test whether this difference reflects elevated homeostatic sleep pressure, sleep and sleep EEG before and after sleep deprivation were studied in 2 prospectively matched groups of G/A and G/G genotype subjects. Deep sleep and EEG 0.75- to 1.5-Hz oscillations in non-REM sleep were significantly higher in G/A than in G/G genotype. Moreover, attention and vigor were reduced, whereas waking EEG alpha activity (8.5-12 Hz), sleepiness, fatigue, and α-amylase in saliva were enhanced. These convergent data demonstrate that genetic reduction of ADA activity elevates sleep pressure and plays a key role in sleep and waking quality in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.