The energy industry is undergoing a digital transformation, whose goals include increased operational efficiency and reduced energy extraction costs. Data science and machine learning (ML) are enabling the drilling engineering community to contribute to the success of these goals. An ML-based digital solution has been developed to assist the drilling engineer select an optimum bottomhole assembly (BHA) and drilling fluid technology during the well design phase. Traditionally, these selections depended on offset well analysis, which is a manual and time-consuming undertaking. As an alternative, the new digital solution, launched in the form of a web app, automatically selects similar offset wells, and evaluates the available BHA and drilling fluid options from those similar wells. The web app displays these options to the drilling engineer, who is now empowered to make fully informed data-driven decisions. To power the new digital solution, an extensive effort was made to gather, clean, and prepare global operational data into a new database. This operational database includes the selection decisions and performance results of drill bits, motor power sections, rotary steerable systems, BHA configurations, and drilling fluids. After the drilling engineer defines the parameters of the planned drilling run, a multidimensional distance-based approach is used to automatically select the most similar previous drilling runs within the context of the technology selection. The drilling engineer can also fine tune the offset selection based on experience using filters in the web app. Once the most similar offset runs are determined, the technology selection decisions are scored for numerous key performance indicators (KPIs). These KPIs, along with user-defined weights, drive the overall scores. Finally, technology selection recommendations are based on the overall scores and other contextual data such as local availability and cost. The new digital solution has been deployed to a global group of drilling engineers. Feedback sessions are held regularly, and the development team uses this feedback to rapidly iterate and improve user experience. While today's drilling engineers have access to a vast amount of data and information, it often cannot be used in a practical and efficient way. The new solution places all previous drilling system technology selection choices and results into the hands of the drilling engineers, allowing them to make their best decisions. This approach demonstrates how ML and innovative software deployment methods can truly assist the human decision-making process and succeed in accomplishing the goals of digital transformation. To our knowledge, this is a unique approach to drilling system design optimization. Not only is the approach unique, but the database developed as a portion of this effort is likely the largest drilling operations database within the industry. This paper presents all phases of the project, including the details of database creation, data preparation, development of the ML models, and the creation and iteration of the user interface. Finally, this paper presents the future of this effort as part of the company's vision to be our customers’ performance partner of choice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.