Centroid-based methods including k-means and fuzzy c-means are known as effective and easy-to-implement approaches to clustering purposes in many applications. However, these algorithms cannot be directly applied to supervised tasks. This paper thus presents a generative model extending the centroid-based clustering approach to be applicable to classification and regression tasks. Given an arbitrary loss function, the proposed approach, termed Supervised Fuzzy Partitioning (SFP), incorporates labels information into its objective function through a surrogate term penalizing the empirical risk. Entropy-based regularization is also employed to fuzzify the partition and to weight features, enabling the method to capture more complex patterns, identify significant features, and yield better performance facing high-dimensional data. An iterative algorithm based on block coordinate descent scheme is formulated to efficiently find a local optimum. Extensive classification experiments on synthetic, real-world, and high-dimensional datasets demonstrate that the predictive performance of SFP is competitive with state-of-the-art algorithms such as random forest and SVM. The SFP has a major advantage over such methods, in that it not only leads to a flexible, nonlinear model but also can exploit any convex loss function in the training phase without compromising computational efficiency.
Background: Acute kidney injury (AKI) in critically ill patients is associated with a significant increase in mortality as well as long-term renal dysfunction and chronic kidney disease (CKD). Serum creatinine (SCr), the most widely used biomarker to evaluate kidney function, does not always accurately predict the glomerular filtration rate (GFR), since it is affected by some non-GFR determinants such as muscle mass and recent meat ingestion. Researchers and clinicians have gained interest in cystatin C (CysC), another biomarker of kidney function. The study objective was to compare GFR estimation using SCr and CysC in detecting CKD over a 1-year follow-up after an AKI stage-3 event in the ICU, as well as to analyze the association between eGFR (using SCr and CysC) and mortality after the AKI event. Method: This prospective observational study used the medical records of ICU patients diagnosed with AKI stage 3. SCr and CysC were measured twice during the ICU stay and four times following diagnosis of AKI. The eGFR was calculated using the EKFC equation for SCr and FAS equation for CysC in order to check the prevalence of CKD (defined as eGFR < 60 mL/min/1.73 m2). Results: The study enrolled 101 patients, 36.6% of whom were female, with a median age of 74 years (30–92), and a median length of stay of 14.5 days in intensive care. A significant difference was observed in the estimation of GFR when comparing formulas based on SCrand CysC, resulting in large differences in the prediction of CKD. Three months after the AKI event, eGFRCysC < 25 mL/min/1.73 m2 was a predictive factor of mortality later on; however, this was not the case for eGFRSCr. Conclusion: The incidence of CKD was highly discrepant with eGFRCysC versus eGFRSCr during the follow-up period. CysC detects more CKD events compared to SCr in the follow-up phase and eGFRCysC is a predictor for mortality in follow-up but not eGFRSCr. Determining the proper marker to estimate GFR in the post-ICU period in AKI stage-3 populations needs further study to improve risk stratification.
Acute Kidney Injury (AKI) is a sudden episode of kidney failure that is frequently seen in critically ill patients. AKI has been linked to chronic kidney disease (CKD) and mortality. We developed machine learning-based prediction models to predict outcomes following AKI stage 3 events in the intensive care unit. We conducted a prospective observational study that used the medical records of ICU patients diagnosed with AKI stage 3. A random forest algorithm was used to develop two models that can predict patients who will progress to CKD after three and six months of experiencing AKI stage 3. To predict mortality, two survival prediction models have been presented using random survival forests and survival XGBoost. We evaluated established CKD prediction models using AUCROC, and AUPR curves and compared them with the baseline logistic regression models. The mortality prediction models were evaluated with an external test set, and the C-indices were compared to baseline COXPH. We included 101 critically ill patients who experienced AKI stage 3. To increase the training set for the mortality prediction task, an unlabeled dataset has been added. The RF (AUPR: 0.895 and 0.848) and XGBoost (c-index: 0.8248) models have a better performance than the baseline models in predicting CKD and mortality, respectively Machine learning-based models can assist clinicians in making clinical decisions regarding critically ill patients with severe AKI who are likely to develop CKD following discharge. Additionally, we have shown better performance when unlabeled data are incorporated into the survival analysis task.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.