The receptor tyrosine kinase ErbB-2 plays an important role in the regulation of growth factor-induced signal transduction cascades in the epithelium, and ErbB-2 is frequently overexpressed in epithelial tumors. Our previous studies on clinical prostate cancer specimens indicated that ErbB-2 expression was increased in patients undergoing hormone ablation therapy. We had also shown that the critical cell cycle regulatory gene cyclin D1 and its promoter were targets of proliferative signaling in prostate cancer cell lines, and that cyclin D1 was required for ErbB-2-induced mammary tumorigenesis. In the current studies, we found that increased ErbB-2 membrane expression correlated with increased nuclear cyclin D1 staining in clinical prostate cancer specimens, and that expression of ErbB-2 was capable of inducing cell cycle progression in human prostate cancer cell lines. We further showed that ErbB-2 induced the cyclin D1 promoter in DU145 cells, and that small interfering RNA knockdown of cyclin D1 protein levels blocked a significant proportion of the heregulin-induced cell cycle progression in LNCaP cells. Probasin promoter-targeted expression of an activated ErbB-2 isoform induced cyclin D1 expression in the mouse prostate, commensurate with prostate intraepithelial neoplasia. Together, these in vitro and in vivo studies identify cyclin D1 as a critical downstream target of ErbB-2 in the prostate epithelium, both of which are possible therapeutic targets for cancer intervention. Furthermore, our novel mouse model provides a useful platform for ongoing in vivo investigations of ErbB-2 signaling in the prostate epithelium. [Cancer Res 2007;67(9):4364-72]
We have recently reported that glucocorticoid receptor (GR) transcript 1A, one of the five mouse GR splice variants (1A-1E), encodes membrane GR (mGR), which subsequently participates in mediating the apoptotic effects of glucocorticoids (GCs); all transcripts vary at their 5'UTR. Computer analysis of the entire1026 bp comprising the 5'UTR of transcript 1A identified five putative translation start sites at positions 85, 217, 478, 628, and 892 with the potential to encode peptides of 33, 93, 6, 18, and 41 amino acids, respectively. We then separately generated point mutations at these five upstream AUG codons of the GR 1A cDNA and performed in vitro transcription/translation experiments to investigate the regulatory effects of these sites on GR synthesis. GR translation products were immuno-captured with BUGR-2 antibody (Ab), then subjected to Western blot analysis. Mutation of the uAUG codon-2 completely inhibited GR synthesis, while mutations at the other four uAUG codons had no significant effect on the translation of transcript 1A. Antibodies (Abs) against the uORF-2 and uORF-5 protein products were used to perform Western blot analysis on cytosolic proteins from S-49 cells (which express GR transcript 1A), U937 cells transfected with GR 1A cDNA, or in vitro translation products from this cDNA. This assay identified an intense immunoreactive band of approximately 8.5 kDa recognized only with Ab to the uORF-2 peptide; this size is consistent with the computer-predicted size of the uORF-2 product, suggesting that the uORF-2 product is indeed synthesized in cells. No peptide was identified with Ab to uORF-5 peptide. Indirect fluorescent Ab staining, confocal microscopy and FACS analysis all showed that the ORF-2 peptide is localized both in the interior of the cell and at the plasma membrane. Using Ab to ORF-2 peptide for immunoadsorption we then asked whether cellular factors interact with the product of uORF-2. Immuno-captured uORF-2 peptide levels correlated with the concentrations of several salt-wash-sensitive cellular proteins, suggesting that protein-protein interactions occur between this upstream open reading frame (uORF) product and other factors. The uORF-2 product, however, does not appear to directly interact with GR, since there was no reciprocal immuno-capture between these two proteins. In summary, our results show that cells can synthesize the uORF-2 peptide, blocking of the synthesis of the uORF-2 peptide product abolishes translation of GR from the GR 1A transcript, and the peptide product of uORF-2 interacts with other cellular factors which might be involved in translation of GR.
We have recently reported that glucocorticoid receptor (GR) transcript 1A, one of the five mouse GR splice variants (1A-1E), encodes membrane GR (mGR), which subsequently participates in mediating the apoptotic effects of glucocorticoids (GCs); all transcripts vary at their 5'UTR. Computer analysis of the entire1026 bp comprising the 5'UTR of transcript 1A identified five putative translation start sites at positions 85, 217, 478, 628, and 892 with the potential to encode peptides of 33, 93, 6, 18, and 41 amino acids, respectively. We then separately generated point mutations at these five upstream AUG codons of the GR 1A cDNA and performed in vitro transcription/translation experiments to investigate the regulatory effects of these sites on GR synthesis. GR translation products were immuno-captured with BUGR-2 antibody (Ab), then subjected to Western blot analysis. Mutation of the uAUG codon-2 completely inhibited GR synthesis, while mutations at the other four uAUG codons had no significant effect on the translation of transcript 1A. Antibodies (Abs) against the uORF-2 and uORF-5 protein products were used to perform Western blot analysis on cytosolic proteins from S-49 cells (which express GR transcript 1A), U937 cells transfected with GR 1A cDNA, or in vitro translation products from this cDNA. This assay identified an intense immunoreactive band of approximately 8.5 kDa recognized only with Ab to the uORF-2 peptide; this size is consistent with the computer-predicted size of the uORF-2 product, suggesting that the uORF-2 product is indeed synthesized in cells. No peptide was identified with Ab to uORF-5 peptide. Indirect fluorescent Ab staining, confocal microscopy and FACS analysis all showed that the ORF-2 peptide is localized both in the interior of the cell and at the plasma membrane. Using Ab to ORF-2 peptide for immunoadsorption we then asked whether cellular factors interact with the product of uORF-2. Immuno-captured uORF-2 peptide levels correlated with the concentrations of several salt-wash-sensitive cellular proteins, suggesting that protein-protein interactions occur between this upstream open reading frame (uORF) product and other factors. The uORF-2 product, however, does not appear to directly interact with GR, since there was no reciprocal immuno-capture between these two proteins. In summary, our results show that cells can synthesize the uORF-2 peptide, blocking of the synthesis of the uORF-2 peptide product abolishes translation of GR from the GR 1A transcript, and the peptide product of uORF-2 interacts with other cellular factors which might be involved in translation of GR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.