Partially linear regression models are semiparametric models that contain both linear and nonlinear components. They are extensively used in many scientific fields for their flexibility and convenient interpretability. In such analyses, testing the significance of the regression coefficients in the linear component is typically a key focus. Under the high‐dimensional setting, i.e., “large p, small n,” the conventional F‐test strategy does not apply because the coefficients need to be estimated through regularization techniques. In this article, we develop a new test using a U‐statistic of order two, relying on a pseudo‐estimate of the nonlinear component from the classical kernel method. Using the martingale central limit theorem, we prove the asymptotic normality of the proposed test statistic under some regularity conditions. We further demonstrate our proposed test's finite‐sample performance by simulation studies and by analyzing some breast cancer gene expression data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.