Molecular dynamics simulations are powerful tools to extract the microscopic mechanisms characterizing the properties of soft materials. We recently introduced machine learning surrogates for molecular dynamics simulations of soft materials and demonstrated that artificial neural network based regression models can successfully predict the relationships between the input material attributes and the simulation outputs. Here, we show that statistical uncertainties associated with the outputs of molecular dynamics simulations can be utilized to train artificial neural networks and design machine learning surrogates with higher accuracy and generalizability. We design soft labels for the simulation outputs by incorporating the uncertainties in the estimated average output quantities, and introduce a modified loss function that leverages these soft labels during training to significantly reduce the surrogate prediction error for input systems in the unseen test data. The approach is illustrated with the design of a surrogate for molecular dynamics simulations of confined electrolytes to predict the complex relationship between the input electrolyte attributes and the output ionic structure. The surrogate predictions for the ionic density profiles show excellent agreement with the ground truth results produced using molecular dynamics simulations. The high accuracy and small inference times associated with the surrogate predictions provide quick access to quantities derived using the number density profiles and facilitate rapid sensitivity analysis.
The performance promise of machine learning surrogates of molecular dynamics simulations of soft materials is significant but generally comes at the cost of acquiring large training datasets to learn the complex relationships between input soft material attributes and output properties. Under the constraint of limited high-performance computing resources, optimizing the size of the training datasets becomes paramount. Using an artificial neural network based surrogate for molecular dynamics simulations of confined electrolytes, we explore the tradeoff between surrogate accuracy and computational gains. Accuracy is assessed by computing the root-mean-square errors between the surrogate predictions and the ground truth results obtained via molecular dynamics simulations. The computational performance is judged by evaluating the speedup which incorporates the training dataset creation time. Improvement in accuracy occurs with a loss of speedup, which scales as the inverse of the training dataset size. The link between surrogate generalizability and the accuracy-speedup tradeoff is assessed by examining the errors incurred in surrogate predictions on unseen, interpolated input variables and developing a net speedup metric to capture the associated gains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.