Microcantilever biosensors offer the capability to detect specific molecular binding like complementary DNA fragment hybridization or specific antibody-antigen binding. The cantilever deflection, which can be optically detected, is caused by the adsorption of biological molecules like DNA fragments upon the microcantilever surface and the subsequent specific binding to the complementary species. The cantilever deflection is due to the surface stress induced by the free energy variation on the cantilever surface. Contributions to the free energy variation come from a number of interactions within the molecules, such as electrostatic interactions, biomolecule conformational entropy and internal energy variation, hydration forces. In the present work the effect of the electrostatic field within DNA biomolecules on the cantilever deflection is investigated. The electrostatic field within double strand DNA molecules is studied by means of a Finite Element (FE) analysis aimed at numerically solving the non linear Poisson Boltzmann equation (PBE) in the domain representing the biomolecule system. The electrostatic analysis has been coupled to a FE structural analysis in order to evaluate the influence of the electrostatic field on the cantilever deflection. The double strand DNA molecules are modelled as a periodic disposition of cylinders negatively charged at the surface. The hexagonal and square DNA molecule patterns were compared, and the Manning condensation hypothesis was discussed. The results are shown for different operating conditions and compared with experimental data from literature.
Interest in microcantilever based biosensors in the biomedical field has largely increased during the last years. Potentially, this kind of sensor can provide a considerable contribution to complex disease diagnosis, which requires the detection of biological molecules. Microcantilever biosensors allow the detection of complementary DNA fragment hybridization or specific antibody-antigen binding; it is known that adsorption of specific biological molecules upon the microcantilever surface induces cantilever deflection due to the interaction of the molecules with the surface. To date, the phenomena which determine the deflection mechanism are not completely known. The present work investigates the electrostatic field within the molecules and the forces consequently acting on the molecules and on the cantilever in order to provide a description of the deflection mechanism. The electrostatic potential of arrays of double strand DNA molecules immersed in an ionic solution was modelled by means of cylinders negatively charged at the surface and a FE (Finite Element) continuum electrostatics analysis was implemented in order to numerically solve the second order non-linear Poisson-Boltzmann equation. Then, a FE structural analysis of the cantilever was performed coupled with the continuum electrostatics analysis. In this way, the effects of the molecules’ electrostatic interactions on the cantilever deflection were taken into account. The model was run to describe the microcantilever deflection due to the electrostatic field under different design and operating conditions, and it was also set to compare hexagonal and square disposition of double strand DNA molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.