A multidisciplinary work integrating structural, geodetic and seismological data was performed in the Catanzaro Trough (central Calabria, Italy) to define the seismotectonic setting of this area. The Catanzaro Trough is a structural depression transversal to the Calabrian Arc, lying in-between two longitudinal grabens: the Crati Basin to the north and the Mesima Basin to the south. The investigated area experienced some of the strongest historical earthquakes of Italy, whose seismogenic sources are still not well defined. We investigated and mapped the major WSW–ENE to WNW–ESE trending normal-oblique Lamezia-Catanzaro Fault System, bounding to the north the Catanzaro Trough. Morphotectonic data reveal that some fault segments have recently been reactivated since they have displaced upper Pleistocene deposits showing typical geomorphic features associated with active normal fault scarps such as triangular and trapezoidal facets, and displaced alluvial fans. The analysis of instrumental seismicity indicates that some clusters of earthquakes have nucleated on the Lamezia-Catanzaro Fault System. In addition, focal mechanisms indicate the prevalence of left-lateral kinematics on E–W roughly oriented fault plains. GPS data confirm that slow left-lateral motion occurs along this fault system. Minor north-dipping normal faults were also mapped in the southern side of the Catanzaro Trough. They show eroded fault scarps along which weak seismic activity and negligible geodetic motion occur. Our study highlights that the Catanzaro Trough is a poliphased Plio-Quaternary extensional basin developed early as a half-graben in the frame of the tear-faulting occurring at the northern edge of the subducting Ionian slab. In this context, the strike-slip motion contributes to the longitudinal segmentation of the Calabrian Arc. In addition, the high number of seismic events evidenced by the instrumental seismicity, the macroseismic intensity distribution of the historical earthquakes and the scaling laws relating to earthquakes and seismogenic faults support the hypothesis that the Lamezia-Catanzaro Fault System may have been responsible for the historical earthquakes since it is capable of triggering earthquakes with magnitude up to 6.9.
Abstract. On 24 August 2016 a strong earthquake (Mw = 6.0) affected central Italy and an intense seismic sequence started. Field observations, DInSAR (Differential INterferometry Synthetic-Aperture Radar) analyses and preliminary focal mechanisms, as well as the distribution of aftershocks, suggested the reactivation of the northern sector of the Laga fault, the southern part of which was already rebooted during the 2009 L'Aquila sequence, and of the southern segment of the Mt Vettore fault system (MVFS). Based on this preliminary information and following the stress-triggering concept (Stein, 1999; Steacy et al., 2005), we tentatively identified a potential fault zone that is very vulnerable to future seismic events just north of the earlier epicentral area. Accordingly, we planned a local geodetic network consisting of five new GNSS (Global Navigation Satellite System) stations located a few kilometres away from both sides of the MVFS. This network was devoted to working out, at least partially but in some detail, the possible northward propagation of the crustal network ruptures. The building of the stations and a first set of measurements were carried out during a first campaign (30 September and 2 October 2016). On 26 October 2016, immediately north of the epicentral area of the 24 August event, another earthquake (Mw = 5.9) occurred, followed 4 days later (30 October) by the main shock (Mw = 6.5) of the whole 2016 summer–autumn seismic sequence. Our local geodetic network was fully affected by the new events and therefore we performed a second campaign soon after (11–13 November 2016). In this brief note, we provide the results of our geodetic measurements that registered the co-seismic and immediately post-seismic deformation of the two major October shocks, documenting in some detail the surface deformation close to the fault trace. We also compare our results with the available surface deformation field of the broader area, obtained on the basis of the DInSAR technique, and show an overall good fit.
Abstract. On October 26th 2016, immediately north of the epicentral area affected by the Mw 6.0, August 24th earthquake, a strong earthquake (Mw = 5.9), with a focal mechanism showing W-dipping normal faulting, occurred at the boundary between Marche and Umbria regions (central Apennines, Italy). Four days later (on October 30th), the main-shock (Mw = 6.5) of the whole seismic sequence occurred in the same area. The central Apennines are characterized by northeast-verging thrust-propagation folds, involving Mesozoic- Tertiary sedimentary successions. During the 2016 sequence, coseismic deformation has been recorded at the rear of the Sibillini Thrust which separates the main mountain chain from the Marche-Abruzzi foothills (Fig. 1). This contractional structure has been partly dissected and/or inverted by NNW-SSE trending Quaternary normal and oblique-slip faults. The major event (October 30) induced extensive geological effects at the surface and structural damages in the broader epicentral area up to a distance of 30 km. According to the report of the Istituto Nazionale di Geofisica e Vulcanologia (SUMMARY REPORT ON THE 30 OCTOBER, 2016 EARTHQUAKE IN CENTRAL ITALY Mw 6.5, Gruppo di Lavoro INGV sul Terremoto in centro Italia 10 November 2016), the hypocenter of major event was located at 42.8322° N, 13.1107° E at a depth of 9.2 km (Figs. 1 and 2). Following the August seismic events, we installed five new geodetic points located on both sides of the principal fracture zone and carried out two campaigns of GNSS measurements, the first one at the end of September (30-09/02-10, 2016), the second one early November (11/13-11, 2016) that covered the period of the October events. In this brief communication, we provide the results of our geodetic campaigns that registered the co- seismic displacement occurred in the period between doy (day of year) 2016/274 and doy 2016/318, therefore documenting the two latter major shocks. We also compare our results with the available surface deformation field of the broader area obtained on the basis of the DInSAR technique and particularly the elaboration realized by CNR-IREA of Sentinel-1 radar imaging of Copernicus European Program of 26/10–1/11 (http://www.irea.cnr.it/index.php?option=com_k2&view=item&id=761:nuovi-risultati-sul-terremoto- del-30-ottobre-2016-ottenuti-dai-radar-dei-satelliti-sentinel-1). The comparison shows an overall good fit. It’s worth to note that these earthquakes occurred in a sector of the Central Apennines characterized by high geodetic strain-rates (e.g., D’Agostino 2014), where several continuous GNSS stations are operating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.