Purpose
To evaluate the prevalence of and factors associated with meniscal ramp lesions on magnetic resonance imaging (MRI) in patients with anterior cruciate ligament (ACL) injuries.
Methods
Data from the Natural Corollaries and Recovery after ACL injury multicentre longitudinal cohort study (NACOX) were analysed. Only patients who underwent MRI were included in this study. All MRI scans were reviewed by an orthopaedic knee surgeon and a musculoskeletal radiologist. The patients were divided into two groups, those with and without ramp lesions according to MRI findings. Univariable and stepwise forward multiple logistic regression analyses were used to evaluate patient characteristics (age, gender, body mass index, pre-injury Tegner activity level, activity at injury) and concomitant injuries on MRI (lateral meniscus, medial collateral ligament [MCL], isolated deep MCL, lateral collateral ligament, pivot-shift-type bone bruising, posteromedial tibial [PMT] bone bruising, medial femoral condyle bone bruising, lateral femoral condyle [LFC] impaction and a Segond fracture) associated with the presence of meniscal ramp lesions.
Results
A total of 253 patients (52.2% males) with a mean age of 25.4 ± 7.1 years were included. The overall prevalence of meniscal ramp lesions was 39.5% (100/253). Univariate analyses showed that contact sports at ACL injury, pivot-shift-type bone bruising, PMT bone bruising, LFC impaction and the presence of a Segond fracture increased the odds of having a meniscal ramp lesion. Stepwise forward multiple logistic regression analysis revealed that the presence of a meniscal ramp lesion was associated with contact sports at ACL injury [odds ratio (OR) 2.50; 95% confidence intervals (CI) 1.32–4.72; P = 0.005], pivot-shift-type bone bruising (OR 1.29; 95% CI 1.01–1.67; P = 0.04), PMT bone bruising (OR 4.62; 95% CI 2.61–8.19; P < 0.001) and the presence of a Segond fracture (OR 4.38; 95% CI 1.40–13.68; P = 0.001).
Conclusion
The overall prevalence of meniscal ramp lesions in patients with ACL injuries was high (39.5%). Contact sports at ACL injury, pivot-shift-type bone bruising, PMT bone bruising and the presence of a Segond fracture on MRI were associated with meniscal ramp lesions. Given their high prevalence, meniscal ramp lesions should be systematically searched for on MRI in patients with ACL injuries. Knowledge of the factors associated with meniscal ramp lesions may facilitate their diagnosis, raising surgeons’ and radiologists’ suspicion of these tears.
Level of evidence
III.
ObjectiveRecent studies have challenged the accuracy of conventional measurements of glenoid version. Variability in the orientation of the scapula from individual anatomical differences and patient positioning, combined with differences in observer measurement practices, have been identified as sources of variability. The purpose of this study was to explore the utility and reliability of clinically available software that allows manipulation of three-dimensional images in order to bridge the variance between clinical and anatomic version in a clinical setting.Materials and methodsTwenty CT scans of normal glenoids of patients who had proximal humerus fractures were measured for version. Four reviewers first measured version in a conventional manner (clinical version), measurements were made again (anatomic version) after employing a protocol for reformatting the CT data to align the coronal and sagittal planes with the superior-inferior axis of the glenoid, and the scapular body, respectively.ResultsThe average value of clinical retroversion for all reviewers and all subjects was −1.4° (range, −16° to 21°), as compared to −3.2° (range, −21° to 6°) when measured from reformatted images. The mean difference between anatomical and clinical version was 1.9° ± 5.6° but ranged on individual measurements from −13° to 26°. In no instance did all four observers choose the same image slice from the sequence of images.ConclusionsThis study confirmed the variation in glenoid version dependent on scapular orientation previously identified in other studies using scapular models, and presents a clinically accessible protocol to correct for scapular orientation from the patient’s CT data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.