Disks around young stars are known to evolve from optically thick, gas-dominated protoplanetary disks to optically thin, almost gasfree debris disks. It is thought that the primordial gas is largely removed at ages of ∼10 Myr and indeed, only little amounts of gas have been deduced from observations for debris disks at ages of > ∼ 10 Myr. However, gas detections are difficult and often indirect, not allowing one to discern the true gas densities. This suggests using dynamical arguments: it has been argued that gas, if present with higher densities, would lead to flatter radial profiles of the dust density and brightness than those actually observed. In this paper, we systematically study the influence of gas on the radial profiles of brightness. We assume that dust is replenished by planetesimals orbiting in a "birth ring" and model the dust distribution and scattered-light brightness profile in the outer part of the disk exterior to the birth ring, under different assumptions about the gas component. Our numerical simulations, supported with an analytic model, show that the radial profile of dust density and the surface brightness are surprisingly insensitive to variation of the parameters of a central star, location of the dust-producing planetesimal belt, dustiness of the disk and -most importantly -the parameters of the ambient gas. The radial brightness slopes in the outer disks are all typically in the range −3...−4. This result holds for a wide range of gas densities (three orders of magnitude), for different radial profiles of the gas temperature, both for gas of solar composition and gas of strongly non-solar composition. The slopes of −3...−4 we find are the same that were theoretically found for gas-free debris disks, and they are the same as actually retrieved from observations of many debris disks. Our specific results for three young (10−30 Myr old), spatially resolved, edge-on debris disks (β Pic, HD 32297, and AU Mic) show that the observed radial profiles of the surface brightness do not pose any stringent constraints on the gas component of the disk. We cannot exclude that outer parts of the systems may have retained substantial amounts of primordial gas which is not evident in the gas observations (e.g. as much as 50 Earth masses for β Pic). However, the possibility that gas, most likely secondary, is only present in little to moderate amounts, as deduced from gas detections (e.g. ∼0.05 Earth masses in the β Pic disk or even less), remains open, too.
Although known for almost a century, the photophoretic force has only recently been considered in astrophysical context for the first time. In our work, we have examined the effect of photophoresis, acting together with stellar gravity, radiation pressure, and gas drag, on the evolution of solids in transitional circumstellar disks. We have applied our calculations to four different systems: the disks of HR 4796A and HD 141569A, which are several Myr-old AB-type stars, and two hypothetical systems that correspond to the solar nebula after disk dispersal has progressed sufficiently for the disk to become optically thin. Our results suggest that solid objects migrate inward or outward, until they reach a certain size-dependent stability distance from the star. The larger the bodies, the closer to the star they tend to accumulate. Photophoresis increases the stability radii, moving objects to larger distances. What is more, photophoresis may cause formation of a belt of objects, but only in a certain range of sizes and only around low-luminosity stars. The effects of photophoresis are noticeable in the size range from several micrometers to several centimeters (for older transitional disks) or even several meters (for younger, more gaseous, ones). We argue that due to gas damping, rotation does not substantially inhibit photophoresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.