The spread of multiresistant bacteria increases the need for new antibiotics. The observation that some nucleoside analogues have antibacterial activity led us to further investigate the antimicrobial activity and resistance of zidovudine (AZT). We determined the minimum inhibition concentration (MIC), studied time-kill curves, induced resistant bacteria and sequenced the gene for thymidine kinase. We demonstrate that AZT has a bactericidal effect on some enterobacteria. However, AZT could induce resistance in Escherichia coli. These resistances were associated with various modifications in the thymidine kinase gene. In particular, we observed the presence in this gene of an insertion sequence (IS) similar to IS911 of Shigella dysenteriae in two resistant clones. No cross-resistance with classical antibiotics in strains with modified thymidine kinase gene was observed. Finally, an additive or synergistic activity between AZT and the two aminoglycoside antibiotics amikacin and gentamicin was observed. We demonstrate the bactericidal activity of AZT and show synergy in association with gentamicin. Genetic modifications in resistant bacteria were identified. Our results indicate that AZT could potentially be added in the treatment of infections with enterobacteria or represent the basis for the development of derivatives with better activity and inducing less resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.