Hydration scanning probe microscopy is a technique similar to scanning tunneling microscopy, in which the probe current, sustained by the slight surface conduction of a thin hydration layer covering an insulating support surface, is essentially electrochemical in nature instead of electronic tunneling. Such a technique allows the imaging of a great variety of samples, including insulators, provided that they are hydrophilic, as well as the study of molecular samples of biological interest (such as DNA) fixed on a suitable supporting surface. The main problem to obtain stable and reproducible images comes from the very critical determination of the operating conditions under which the probe-hydration layer interaction does not lead to the formation of a relatively large water meniscus. It has been suggested that this issue can be removed by adding a high frequency oscillation to the probe movement, as in tapping atomic force microscopy. Meniscus formation and breakup have been investigated in order to determine the best values for the amplitude and the frequency of the oscillation. Results obtained in this mode are discussed in comparison with the usual continuous contact mode.
A software package has been developed to implement the real time feedback control loop needed in scanning probe microscopy on a general purpose desktop computer of the current high-speed/multicore generation. The main features of the implementation of both the feedback loop and the control of the experiment on the same computer are discussed. The package can work with several general purpose data acquisition boards and can be extended in a modular way to further board models; timing performance has been tested with several hardware configurations and some applications common in scanning probe microscopy. The package is available under an Open Source license.
The evolution of the profile of nanometer sized water drops on a mica surface has been studied through hydration scanning probe microscopy. A time range from a few seconds down to a fraction of millisecond after the formation of the drop has been explored. This high time resolution has been obtained by sampling a series of statistically equivalent drops. This approach also avoids any probe interference during the drop evolution process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.