Chimeric antigen receptors (CARs) can effectively redirect cytotoxic T cells toward highly expressed surface antigens on tumor cells. The low expression of several tumor-associated antigens (TAAs) on normal tissues, however, hinders their safe targeting by CAR T cells due to on-target/off-tumor effects. Using the multiple myeloma (MM)-associated CD38 antigen as a model system, here, we present a rational approach for effective and tumor-selective targeting of such TAAs. Using "light-chain exchange" technology, we combined the heavy chains of two high-affinity CD38 antibodies with 176 germline light chains and generated ∼124 new antibodies with 10- to >1,000-fold lower affinities to CD38. After categorizing them into three distinct affinity classes, we incorporated the single-chain variable fragments of eight antibodies from each class into new CARs. T cells carrying these CD38-CARs were extensively evaluated for their on-tumor/off-tumor cytotoxicity as well as CD38-dependent proliferation and cytokine production. We identified CD38-CAR T cells of ∼1,000- fold reduced affinity, which optimally proliferated, produced Th1-like cytokines, and effectively lysed CD38 MM cells, but spared CD38 healthy hematopoietic cells in vitro and in vivo. Thus, this systematic approach is highly suitable for the generation of optimal CARs for effective and selective targeting of TAAs.
A doptive transfer of chimeric antigen receptor-transduced T cells is a promising strategy for cancer immunotherapy. The CD38 molecule, with its high expression on multiple myeloma cells, appears a suitable target for antibody therapy. Prompted by this, we used three different CD38 antibody sequences to generate second-generation retroviral CD38-chimeric antigen receptor constructs with which we transduced T cells from healthy donors and multiple myeloma patients. We then evaluated the preclinical efficacy and safety of the transduced T cells. Irrespective of the donor and antibody sequence, CD38-chimeric antigen receptor-transduced T cells proliferated, produced inflammatory cytokines and effectively lysed malignant cell lines and primary malignant cells from patients with acute myeloid leukemia and multi-drug resistant multiple myeloma in a cell-dose, and CD38-dependent manner, despite becoming CD38-negative during culture. CD38-chimeric antigen receptor-transduced T cells also displayed significant anti-tumor effects in a xenotransplant model, in which multiple myeloma tumors were grown in a human bone marrow-like microenvironment. CD38-chimeric antigen receptor-transduced T cells also appeared to lyse the CD38 + fractions of CD34 + hematopoietic progenitor cells, monocytes, natural killer cells, and to a lesser extent T and B cells but did not inhibit the outgrowth of progenitor cells into various myeloid lineages and, furthermore, were effectively controllable with a caspase-9-based suicide gene. These results signify the potential importance of CD38-chimeric antigen receptor-transduced T cells as therapeutic tools for CD38 + malignancies and warrant further efforts to diminish the undesired effects of this immunotherapy using appropriate strategies. Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma
Purpose: Targeting nonspecific, tumor-associated antigens (TAA) with chimeric antigen receptors (CAR) requires specific attention to restrict possible detrimental on-target/off-tumor effects. A reduced affinity may direct CAR-engineered T (CAR-T) cells to tumor cells expressing high TAA levels while sparing low expressing normal tissues. However, decreasing the affinity of the CAR-target binding may compromise the overall antitumor effects. Here, we demonstrate the prime importance of the type of intracellular signaling on the function of lowaffinity CART cells. Experimental Design: We used a series of single-chain variable fragments (scFv) with five different affinities targeting the same epitope of the multiple myeloma-associated CD38 antigen. The scFvs were incorporated in three different CAR costimulation designs and we evaluated the antitumor functionality and off-tumor toxicity of the generated CART cells in vitro and in vivo. Results: We show that the inferior cytotoxicity and cytokine secretion mediated by CD38 CARs of very low-affinity (K d < 1.9 Â 10 À6 mol/L) bearing a 4-1BB intracellular domain can be significantly improved when a CD28 costimulatory domain is used. Additional 4-1BB signaling mediated by the coexpression of 4-1BBL provided the CD28-based CD38 CART cells with superior proliferative capacity, preservation of a central memory phenotype, and significantly improved in vivo antitumor function, while preserving their ability to discriminate target antigen density. Conclusions: A combinatorial costimulatory design allows the use of very low-affinity binding domains (K d < 1 mmol/L) for the construction of safe but also optimally effective CART cells. Thus, very-low-affinity scFvs empowered by selected costimulatory elements can enhance the clinical potential of TAA-targeting CARs.
Immunotherapy with innate immune cells has recently evoked broad interest as a novel treatment option for cancer patients. ␥9␦2T cells in particular are emerging as an innate cell population with high frequency and strong antitumor reactivity, which makes them and their receptors promising candidates for immune interventions. However, clinical trials have so far reported only limited tumor control by adoptively transferred ␥9␦2T cells. As a potential explanation for this lack of efficacy, we found unexpectedly high variability in tumor recognition within the physiologic human ␥9␦2T-cell repertoire, which is substantially regulated by the CDR3 domains of individual ␥9␦2TCRs. In the present study, we demonstrate that the reported molecular requirements of CDR3 domains to interact with target cells shape the physiologic ␥9␦2T-cell repertoire and, most likely, limit the protective and thera- IntroductionImmunotherapy with innate immune cells has become widely used because this approach obviates the need to match a cellular product to a defined HLA haplotype, allowing adoptive immunotherapies to be used in virtually any cancer patient without extensive in vitro selection or manipulation of the cellular product. 1-4 ␥9␦2T cells are promising as an innate cell population for this purpose because they are usually observed at high frequencies in the human peripheral blood and provide a strong antitumor reactivity against various solid and hematologic cancers. 5 However, within ␥9␦2T-cell populations, individual clones display great diversity in the repertoire because of the activating or inhibitory receptors expressed. 6 Selecting innate cell products for certain cell types, such as those with a low level of inhibitory receptors, therefore seems plausible, especially considering the limited efficacy of adoptively transferred innate immune cells in clinical trials. 7,8 An alternative proposal is to engineer cells to express defined activating innate receptors that mediate strong antitumor reactivity, such as a defined ␥9␦2TCR, 9 which could pave the way for readily available and more effective cellular products. However, the molecular details of how a ␥9␦2TCR interacts with its target are not fully understood, making it challenging to select defined ␥9␦2T cells or to engineer T cells with defined ␥9␦2TCRs.In "classic" immunoreceptors such as ␣TCRs or Igs, the complementary determining regions (CDRs) determine affinity and specificity for a specific (peptide) epitope. V(D)J recombination allows the creation of a highly variable CDR repertoire ensuring recognition of an immense collection of antigens. ␥9␦2T cells also possess a rearranged TCR that mediates recognition. The phosphoantigen isopentenyl pyrophosphate (IPP) has been suggested to be a key player in ␥9␦2TCR-mediated activation, 5,10,11 but no direct interaction between a ␥9␦2TCR and IPP or any other phosphoantigen has ever been demonstrated. It was previously suggested that positively charged residues within the ␥9␦2TCR are crucial for the response to negatively...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.