Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.
Siloxane-poly(methyl methacrylate) (PMMA) organic-inorganic hybrid coatings were deposited on galvanized steel by the dip-coating sol-gel technique. Anticorrosion properties, as well as the morphological, surface and structural features were studied. Hybrid coatings were synthesized from tetraethoxy-silane (TEOS) and methyl methacrylate (MMA) as inorganic and organic phases, respectively, linked by 3-metacriloxypropyl-trimethoxysilane (TMSM) as a coupling agent. The MMA/TMSM ratio was kept constant, whereas the four TEOS/TMSM ratios were varied. The characterization of coatings was assessed using several techniques such as Scanning Electronic Microscopy (SEM), Contact Angle, Fourier Transform Infrared (FT-IR), Open Circuit Polarization (OCP), Atomic Force Microscopy (AFM) and Electrochemical Impedance Spectroscopy measurements (EIS). The EIS results, which were obtained for the hybrid coatings, were discussed based on an electrical equivalent circuit used to adjust the experimental data. The results showed that the increasing the TEOS content caused increase in coating thickness, increased in the surface roughness and increased in the surface hydrophobicity. The film with the highest TEOS content presented the best electrochemical performance, more effective in protecting against corrosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.