This is a PDF file of a peer-reviewed paper that has been accepted for publication. Although unedited, the content has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text and figures will undergo copyediting and a proof review before the paper is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers apply.
The sense of taste allows animals to distinguish nutritious and toxic substances and elicits food acceptance or avoidance behaviors. In Drosophila, taste cells that contain the Gr5a receptor are necessary for acceptance behavior, and cells with the Gr66a receptor are necessary for avoidance. To determine the cellular substrates of taste behaviors, we monitored taste cell activity in vivo with the genetically encoded calcium indicator G-CaMP. These studies reveal that Gr5a cells selectively respond to sugars and Gr66a cells to bitter compounds. Flies are attracted to sugars and avoid bitter substances, suggesting that Gr5a cell activity is sufficient to mediate acceptance behavior and that Gr66a cell activation mediates avoidance. As a direct test of this hypothesis, we inducibly activated different taste neurons by expression of an exogenous ligand-gated ion channel and found that cellular activity is sufficient to drive taste behaviors. These studies demonstrate that taste cells are tuned by taste category and are hardwired to taste behaviors.
Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs detect this gas and relay the information to a dedicated circuit in the brain. Prolonged exposure to CO2 induced a reversible volume increase in the CO2-specific glomerulus. OSNs showed neither altered morphology nor function after chronic exposure, but one class of inhibitory local interneurons showed significantly increased responses to CO2. Two-photon imaging of the axon terminals of a single PN innervating the CO2 glomerulus showed significantly decreased functional output following CO2 exposure. Behavioral responses to CO2 were also reduced after such exposure. We suggest that activity-dependent functional plasticity may be a general feature of the Drosophila olfactory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.