Stepwise crack propagation is evidently observed in experiments both in geomaterials and in hydrogels. Pizzocolo et al. (2012, “Mode I Crack Propagation in Hydrogels is Step Wise,” Eng. Fract. Mech., 97(1), pp. 72–79) show experimental evidence that mode I crack propagation in hydrogel is stepwise. The pattern of the intermittent crack growth is influenced by many factors, such as porosity of the material, the permeability of the fluid, the stiffness of the material, etc. The pause duration time is negatively correlated with the stiffness of the material, while the average propagation length per step is positively correlated. In this paper, we integrate extended finite element method (XFEM) and enhanced local pressure (ELP) method, and incorporate cohesive relation to reproduce the experiments of Pizzocolo et al. in the finite deformation regime. We investigate the stepwise phenomenon in air and in water, respectively, under mode I fracture. Our simulations show that despite the homogeneous material properties, the crack growth under mode I fracture is stepwise, and this pattern is influenced by the hydraulic permeability and the porosity of the material. Simulated pause duration is negatively correlated with stiffness, and the average propagating length is positively correlated with stiffness. In order to eliminate the numerical artifacts, we also take different time increments into consideration. The staccato propagation does not disappear with smaller time increments, and the pattern is approximately insensitive to the time increment. However, we do not observe stepwise crack growth scheme when we simulate fracture in homogeneous rocks.
In numerous industrial applications, the microstructure of materials is critical for performance. However, finite element models tend to average out the microstructure. Hence, finite element simulations are often unsuitable for optimisation of the microstructure. The present paper presents a modelling technique that addresses this limitation for superabsorbent polymers with a partially cross-linked surface layer. These are widely used in the industry for a variety of functions. Different designs of the cross-linked layer have different material properties, influencing the performance of the hydrogel. In this work, the effects of intrinsic properties on the fracture nucleation and propagation in cross-linked hydrogels are studied. The numerical implementation for crack propagation and nucleation is based on the framework of the extended finite element method and the enhanced local pressure model to capture the pressure difference and fluid flow between the crack and the hydrogel, and coupled with the cohesive method to achieve crack propagation without re-meshing. Two groups of numerical examples are given: (1) effects on crack propagation, and (2) effects on crack nucleation. Within each example, we studied the effects of the stiffness (shear modulus) and ultimate strength of the material separately. Simulations demonstrate that the crack behaviour is influenced by the intrinsic properties of the hydrogel, which gives numerical support for the structural design of the cross-linked hydrogel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.