The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients.
Background-In clinical studies, sphingomyelin (SM) plasma levels correlated with the occurrence of coronary heart disease independently of plasma cholesterol levels. We hypothesized that inhibition of SM synthesis would have antiatherogenic effects. To test this hypothesis, apolipoprotein E (apoE)-knockout (KO) mice were treated with myriocin, a potent inhibitor of serine palmitoyltransferase, the rate-limiting enzyme in SM biosynthesis. Methods and Results-Diet-admix treatment of apoE-KO mice with myriocin in Western diet for 12 weeks lowered SM and sphinganine plasma levels. Decreases in sphinganine and SM concentrations were also observed in the liver and aorta of myriocin-treated animals compared with controls. Inhibition of de novo sphingolipid biosynthesis reduced total cholesterol and triglyceride plasma levels. Cholesterol distribution in lipoproteins demonstrated a decrease in -VLDL and LDL cholesterol and an increase in HDL cholesterol. Oil red O staining of total aortas demonstrated reduction of atherosclerotic lesion coverage in the myriocin-treated group. Atherosclerotic plaque area was also reduced in the aortic root and brachiocephalic artery. Conclusions-Inhibition of de novo SM biosynthesis in apoE-KO mice lowers plasma cholesterol and triglyceride levels, raises HDL cholesterol, and prevents development of atherosclerotic lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.