The aim of this study was to evaluate the association between inflammatory and metabolic markers and short-time outcome with acute ischemic stroke subtypes. A total of 121 patients was classified according to TOAST criteria, such as large artery atherosclerosis (LAAS), lacunar infarct (LAC), cardioembolic infarct (CEI), other determined etiology (ODE), and undetermined etiology (UDE). The functional impairment was evaluated within the first eight hours of stroke and the outcome after three-month follow-up using the modified Rankin Scale. Blood samples were obtained up to 24 h of stroke. Compared with 96 controls, patients with LAAS, CEI, and LAC subtypes showed higher levels of white blood cells, high-sensitivity C-reactive protein (hsCRP), interleukin 6 (IL-6), metalloproteinase 9 (MMP-9), glucose, and iron (p < 0.05); and lower high-density lipoprotein cholesterol (HDL-C) (p < 0.0001); platelets, insulin, insulin resistance, and homocysteine were higher in LAC (p < 0.0001); ferritin was higher in LAAS (p < 0.0001); and total cholesterol (TC) was lower in LAAS and CEI (p < 0.01). When stroke subtypes were compared, insulin was higher in LAAS vs. LAC and in LAC vs. CEI (p < 0.05); and TC was lower in LAAS vs. LAC (p < 0.05). Outcome and rate of mortality after three-month were higher in LAAS vs. LAC (p < 0.001 and p = 0.0391 respectively). The results underscored the important role of the inflammatory response and metabolic changes in the pathogenesis of ischemic stroke subtypes that might be considered on the initial evaluation of stroke patients to identify those that could benefit with individualized therapeutic strategies that taken into account these markers after acute ischemic event.
Polymorphisms in genes coding for pro-inflammatory molecules represent important factors for the pathogenesis and outcome of stroke. The aim of this study was to evaluate the relationship between the tumor necrosis factor beta (TNF-β) NcoI (rs909253) polymorphism with inflammatory and metabolic markers in acute ischemic stroke. Ninety-three patients and 134 controls were included. The TNF-β polymorphism was determined using PCR-RFLP with NcoI restriction enzyme. Stroke subtypes and neurological deficit score were evaluated. White blood cell counts, erythrocyte sedimentation rate (ESR), plasma levels of IL-6 and TNF-α, serum high sensitivity C-reactive Protein (hsCRP), serum lipid profile, plasma levels of glucose and insulin, and homeostatic model assessment of insulin resistance (HOMA-IR) were determined. Stroke patients presented higher white blood cell counts, hsCRP, ESR, glucose, insulin, and HOMA-IR, and lower HDL cholesterol than controls (p < 0.01). There was no difference in genotypic and allelic frequency of TNF-β NcoI polymorphism among patients and controls (p > 0.05). However, stroke patients carrying the TNFB2/B2 genotype presented higher levels of TNF-α, white blood cell counts, total cholesterol, LDL cholesterol, glucose, insulin, and HOMA-IR than those with other genotypes (p < 0.05). White blood cells, IL-6, hsCRP, and ESR were positively correlated with the neurological deficit of the patients (p < 0.05). Taken together, TNF-β NcoI polymorphism, by itself, was not associated with increased susceptibility for stroke development. However, the homozygous genotype for the allele TNFB2 was associated with higher expression of classical inflammatory and metabolic markers of development and outcome of stroke than other genotypes. The identification of variant alleles might allow both better prediction of susceptibility for stroke as well the identification of novel stroke mechanisms that could be target to new therapeutic approaches. Stroke patients carrying the TNFB2 variant allele could have a beneficial effect with the anti-inflammatory therapies in the early inflammatory phase of stroke.
Keloid scars are characterized by the excessive proliferation of fibroblasts and an imbalance between the production and degradation of collagen, leading to its buildup in the dermis. There is no “gold standard” treatment for this condition, and the recurrence is frequent after surgical procedures removal. In vitro studies have demonstrated that photobiomodulation (PBM) using the blue wavelength reduces the proliferation speed and the number of fibroblasts as well as the expression of TGF-β. There are no protocols studied and established for the treatment of keloids with blue LED. Therefore, the purpose of this study is to determine the effects of the combination of PBM with blue light and the intralesional administration of the corticoid triamcinolone hexacetonide on the quality of the remaining scar by Vancouver Scar Scale in the postoperative period of keloid surgery. A randomized, controlled, double-blind, clinical trial will be conducted involving two groups: 1) Sham (n = 29): intralesional administration of corticoid (IAC) and sham PBM in the preoperative and postoperative periods of keloid removal surgery; and 2) active PBM combined with IAC (n = 29) in the preoperative and postoperative periods of keloid removal surgery. Transcutaneous PBM will be performed on the keloid region in the preoperative period and on the remaining scar in the postoperative period using blue LED (470 nm, 400 mW, 4J per point on 10 linear points). The patients will answer two questionnaires: one for the assessment of quality of life (Qualifibro-UNIFESP) and one for the assessment of satisfaction with the scar (PSAQ). The team of five plastic surgeons will answer the Vancouver Scar Scale (VSS). All questionnaires will be administered one, three, six, and twelve months postoperatively. The keloids will be molded in silicone prior to the onset of treatment and prior to excision to assess pre-treatment and post-treatment size. The same will be performed for the remaining scar at one, three, six, and twelve months postoperatively. The removed keloid will be submitted to histopathological analysis for the determination of the quantity of fibroblasts, the organization and distribution of collagen (picrosirius staining), and the genic expression of TGF-β (qPCR). All data will be submitted to statistical analysis. Trial registration: This study is registered in ClinicalTrials.gov (ID: NCT04824612).
Introduction: Skin aging is an irreversible, slow and progressive process, mainly influenced by age, but also by external factors such as ultraviolet radiation, smoking, and alcohol, among others. It is increasingly common to look for procedures that slow down skin aging by limiting or hiding its effects on appearance. Studies have shown the benefits of photobiomodulation (PBM) for the skin, especially with the use of red light-emitting diodes. However, there is a high level of variability in the treatment parameters and frequency of application. Methods and analysis: The objective of this study is to compare the effects of PBM with a light-emitting diode mask (660 nm, 6.4 mW/ cm², 8,02 J/ cm², 5.02 mW, 21 minutes) on facial rejuvenation using 2 frequency applications for 4 weeks: one group will receive PBM application on the face, twice a week and another group will receive PBM application 3 times a week. A group with simulated PBM applied twice a week for 4 weeks will be used as a control. The treatment will be performed on female participants aged between 45 and 60 years. After 4 weeks, evaluations of photographic images by specialists (Wrinkle Assessment Scale) as well as the quantitative analysis of the wrinkle size by the Image J software, the depth and width of wrinkles (assessment of face impressions by optical coherence tomography) and the level of Satisfaction with Facial Appearance Overall will be compared with data collected before the start of the study. All data will be analyzed statistically according to their distribution, seeking a level of statistical significance of 0.05. Ethics and dissemination: This protocol was approved by the Research Ethics Committee of the Nove de Julho University (acceptance number: 4.365.565). This trial has been registered in ClinicalTrials.gov (ID: NCT04911140). This study is recruiting.
Due to an oversight, Dr. Daniela Frizon Alfieri and Dr. Francieli Delongui's names were listed incorrectly (as Daniela Alfieri Frizon and Franceili Delongui, respectively) in the article Tumor necrosis factor beta NcoI polymorphism (rs909253) is associated with inflammatory and metabolic markers in acute ischemic stroke, Metab Brain Dis, July 2014,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.