Soil treatments with Metarhizium brunneum EAMa 01/58-Su strain conducted in both Northern and Southern Spain reduced the olive fly (Bactrocera oleae) population density emerging from the soil during spring up to 70% in treated plots compared with controls. A model to determine the influence of rainfall on the conidial wash into different soil types was developed, with most of the conidia retained at the first 5 cm, regardless of soil type, with relative percentages of conidia recovered ranging between 56 and 95%. Furthermore, the possible effect of UV-B exposure time on the pathogenicity of this strain against B. oleae adults coming from surviving preimaginals and carrying conidia from the soil at adult emergence was also evaluated. The UV-B irradiance has no significant effect on M. brunneum EAMa 01/58-Su pathogenicity with B. oleae adult mortalities of 93, 90, 79, and 77% after 0, 2, 4, and 6 of UV-B irradiance exposure, respectively. In a next step for the use of these M. brunneum EAMa 01/58-Sun soil treatments within a B. oleae IPM strategy, its possible effect of on the B. oleae cosmopolitan parasitoid Psyttalia concolor, its compatibility with the herbicide oxyfluorfen 24% commonly used in olive orchards and the possible presence of the fungus in the olive oil resulting from olives previously placed in contact with the fungus were investigated. Only the highest conidial concentration (1 × 108 conidia ml−) caused significant P. concolor adult mortality (22%) with enduing mycosis in 13% of the cadavers. There were no fungal propagules in olive oil samples resulting from olives previously contaminated by EAMa 01/58-Su conidia. Finally, the strain was demonstrated to be compatible with herbicide since the soil application of the fungus reduced the B. oleae population density up to 50% even when it was mixed with the herbicide in the same tank. The fungal inoculum reached basal levels 4 months after treatments (1.6 × 103 conidia g soil−1). These results reveal both the efficacy and environmental and food safety of this B. oleae control method, protecting olive groves and improving olive oil quality without negative effects on the natural enemy P. concolor.
Laboratory experiments were done to measure the pathogenicity of 10 autochthonous isolates of Beauveria bassiana (Balsamo) Vuill. and of five Metarhizium anisopliae (Metsch.) Sorok. toward puparia and adults of the Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Although all isolates applied via inoculation of the fungal suspensions on the ventral surface of the abdomen were pathogenic to adults, with mortality rates ranging from 30 to 100% and average survival times (ASTs) from 6.5 to 8.6 d, when C. capitata puparia were immersed in the conidial suspensions, only B. bassiana Bb-1333 and EABb 01/103-Su and M. anisopliae EAMa 01/58-Su isolates caused >50% mortality of puparia. In a second series of bioassays conducted on five selected isolates, adults were sprayed with four 10-fold concentrations ranging from 1.0 x 10(5) to 1.0 x 10(8) colony-forming units (cfu)/ml. The median lethal concentrations (LC50) of the four most virulent isolates ranged from 4.9 x 10(5) to 2.0 x 10(6) cfu/ml with estimated time to kill 50% of the insects ranging from 4.6 to 5.3 d. The effect of a sublethal dose (ca. LD50) of either B. bassiana EABb 01/103-Su or M. anisopliae EAMa 01/58-Su isolate was studied by reciprocal crossing. Treatment with B. bassiana reduced fecundity and fertility at 6, 8, and 10 d after treatment, with fecundity and fertility reductions ranging from 20.0 to 71.2% and from 33.6 to 60.0%, respectively. These reductions occurred in pairing combinations of treated females with either treated or nontreated males. M. anisopliae was more effective in reducing fecundity and fertility at 6 d after treatment, with the reduction varying from 58.4 to 72.1% and from 28.6 to 45.9%, respectively. In addition, the first oviposition was significantly delayed for 1 d in females treated by either fungal species. The above-mentioned five selected isolates were assayed against C. capitata puparia treated as late third instars in sterilized soil at 25'C under three moisture conditions (-0.1, -0.01, and -0.0055 MPa). At -0.01 MPa, all isolates were low pathogenic to C. capitata puparia, whereas significant differences in the puparia mortality occurred between isolates at -0.1 and -0.0055 MPa. The highest pupal mortalities ranged from 52.5 to 70.0%, as a function of soil moisture and were caused by EAMa 01/58-Su and Bb-1333 isolates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.