A scheme is proposed for linking together into a single equation the equations and inequalities that make up a piecewise representation of a non-harmonic, periodic, continuous or discontinuous function. A method using this scheme is proposed in order to obtain, in closed form, the displacement response of linear vibration problems with piecewise-continuous forcing functions. Since the solution is exact, so are the derivatives, i.e. the velocity and acceleration responses. An example is presented.
The Laplace transform is a very useful tool for the solution of problems involving an impulsive excitation, usually represented by the Dirac delta, but it does not work in nonlinear problems. In contrast with this, the parametric representation of the Dirac delta presented here works both in linear and nonlinear problems. Furthermore, the parametric representation converts the differential equation of a problem with an impulsive excitation into two equations: the first equation referring to the impulse instant (absent in the conventional solution) and the second equation referring to post-impulse time. The impulse instant equation contains fewer terms than the original equation and the impulse is represented by a constant, just as in the Laplace transform, the post-impulse equation is homogeneous. Thus, the solution of the parametric equations is considerably simpler than the solution of the original equation. The parametric solution, involving the equations of both the dependent and independent variables in terms of the parameter, is readily reconverted into the usual equation in terms of the dependent and independent variables only. This parametric representation may be taught at an earlier stage because the principle on which it is based is easily visualized geometrically and because it is only necessary to have a knowledge of elementary calculus to understand it and use it.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.