Drones are expected to be used extensively for delivery tasks in the future. In the absence of obstacles, satellite based navigation from departure to the geo-located destination is a simple task. When obstacles are known to be in the path, pilots must build a flight plan to avoid them. However, when they are unknown, there are too many or they are in places that are not fixed positions, then to build a safe flight plan becomes very challenging. Moreover, in a weak satellite signal environment, such as indoors, under trees canopy or in urban canyons, the current drone navigation systems may fail. Artificial intelligence, a research area with increasing activity, can be used to overcome such challenges. Initially focused on robots and now mostly applied to ground vehicles, artificial intelligence begins to be used also to train drones. Reinforcement learning is the branch of artificial intelligence able to train machines. The application of reinforcement learning to drones will provide them with more intelligence, eventually converting drones in fully-autonomous machines. In this work, reinforcement learning is studied for drone delivery. As sensors, the drone only has a stereo-vision front camera, from which depth information is obtained. The drone is trained to fly to a destination in a neighborhood environment that has plenty of obstacles such as trees, cables, cars and houses. The flying area is also delimited by a geo-fence; this is a virtual (non-visible) fence that prevents the drone from entering or leaving a defined area. The drone has to avoid visible obstacles and has to reach a goal. Results show that, in comparison with the previous results, the new algorithms have better results, not only with a better reward, but also with a reduction of its variance. The second contribution is the checkpoints. They consist of saving a trained model every time a better reward is achieved. Results show how checkpoints improve the test results.
Counter-drone technology by using artificial intelligence (AI) is an emerging technology and it is rapidly developing. Considering the recent advances in AI, counter-drone systems with AI can be very accurate and efficient to fight against drones. The time required to engage with the target can be less than other methods based on human intervention, such as bringing down a malicious drone by a machine-gun. Also, AI can identify and classify the target with a high precision in order to prevent a false interdiction with the targeted object. We believe that counter-drone technology with AI will bring important advantages to the threats coming from some drones and will help the skies to become safer and more secure. In this study, a deep reinforcement learning (DRL) architecture is proposed to counter a drone with another drone, the learning drone, which will autonomously avoid all kind of obstacles inside a suburban neighborhood environment. The environment in a simulator that has stationary obstacles such as trees, cables, parked cars, and houses. In addition, another non-malicious third drone, acting as moving obstacle inside the environment was also included. In this way, the learning drone is trained to detect stationary and moving obstacles, and to counter and catch the target drone without crashing with any other obstacle inside the neighborhood. The learning drone has a front camera and it can capture continuously depth images. Every depth image is part of the state used in DRL architecture. There are also scalar state parameters such as velocities, distances to the target, distances to some defined geofences and track, and elevation angles. The state image and scalars are processed by a neural network that joints the two state parts into a unique flow. Moreover, transfer learning is tested by using the weights of the first full-trained model. With transfer learning, one of the best jump-starts achieved higher mean rewards (close to 35 more) at the beginning of training. Transfer learning also shows that the number of crashes during training can be reduced, with a total number of crashed episodes reduced by 65%, when all ground obstacles are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.