During the development of antimicrobial peptides (AMP) as potential therapeutics, antimicrobial susceptibility testing (AST) stands as an essential part of the process in identification and optimisation of candidate AMP. Standard methods for AST, developed almost 60 years ago for testing conventional antibiotics, are not necessarily fit for purpose when it comes to determining the susceptibility of microorganisms to AMP. Without careful consideration of the parameters comprising AST there is a risk of failing to identify novel antimicrobials at a time when antimicrobial resistance (AMR) is leading the planet toward a post-antibiotic era. More physiologically/clinically relevant AST will allow better determination of the preclinical activity of drug candidates and allow the identification of lead compounds. An important consideration is the efficacy of AMP in biological matrices replicating sites of infection, e.g., blood/plasma/serum, lung bronchiolar lavage fluid/sputum, urine, biofilms, etc., as this will likely be more predictive of clinical efficacy. Additionally, specific AST for different target microorganisms may help to better predict efficacy of AMP in specific infections. In this manuscript, we describe what we believe are the key considerations for AST of AMP and hope that this information can better guide the preclinical development of AMP toward becoming a new generation of urgently needed antimicrobials.
Cysteamine is an endogenous aminothiol produced in mammalian cells as a consequence of coenzyme A metabolism through the activity of the vanin family of pantetheinase ectoenzymes. It is known to have a biological role in oxidative stress, inflammation, and cell migration. There have been several reports demonstrating anti-infective properties targeting viruses, bacteria, and even the malarial parasite. We and others have previously described broad-spectrum antimicrobial and antibiofilm activities of cysteamine. Here, we go further to demonstrate redox-dependent mechanisms of action for the compound and how its antimicrobial effects are, at least in part, due to undermining bacterial defenses against oxidative and nitrosative challenges. We demonstrate the therapeutic potentiation of antibiotic therapy againstPseudomonas aeruginosain mouse models of infection. We also demonstrate potentiation of many different classes of antibiotics against a selection of priority antibiotic-resistant pathogens, including colistin (often considered an antibiotic of last resort), and we discuss how this endogenous antimicrobial component of innate immunity has a role in infectious disease that is beginning to be explored and is not yet fully understood.
There are no wholly successful chemotherapeutic strategies against Burkholderia cepacia complex (BCC) colonization in cystic fibrosis (CF). We assessed the impact of cysteamine (Lynovex) in combination with standard-of-care CF antibiotics in vitro against BCC CF isolates by the concentration at which 100% of bacteria were killed (MIC100) and checkerboard assays under CLSI standard conditions. Cysteamine facilitated the aminoglycoside-, fluoroquinolone- and folate pathway inhibitor-mediated killing of BCC organisms that were otherwise resistant or intermediately sensitive to these antibiotic classes. Slow-growing BCC strains are often recalcitrant to treatment and form biofilms. In assessing the impact of cysteamine on biofilms, we demonstrated inhibition of BCC biofilm formation at sub-MIC100s of cysteamine.
The need for optimized as well as standardized test systems of novel antimicrobial peptides (AMPs) was discussed by experts in the field at the International Meeting on Antimicrobial Peptides (IMAP) 2017 and the 2019 Gordon Research Conference (GRC) on Antimicrobial Peptides, and a survey related to this topic was circulated to participants to collate opinions. The survey included questions ranging from the relevance of susceptibility testing for understanding the mode of action of AMPs, to the importance of optimization and a degree of standardization of test methods and their clinical relevance. Based on the survey results, suggestions for future improvements in the research field are made.
Fungi cause disease in nearly one billion individuals worldwide. Only three classes of antifungal agents are currently available in mainstream clinical use. Emerging and drug resistant fungi, toxicity, and drug–drug interactions compromise their efficacy and applicability. Consequently, new and improved antifungal therapies are urgently needed. In response to that need, we have developed NP339, a 2-kDa polyarginine peptide that is active against pathogenic fungi from the genera Candida, Aspergillus, Cryptococcus, and others. NP339 was designed based on endogenous cationic human defence peptides, which are constituents of the cornerstone of immune defence against pathogenic microbes. NP339 specifically targets the fungal cell membrane through a charge-charge initiated, membrane interaction and therefore possesses a differentiated safety and toxicity profile to existing antifungal classes. NP339 is rapidly fungicidal and does not elicit resistance in target fungi upon extensive passaging in vitro. Preliminary analyses in murine models indicate scope for therapeutic application of NP339 against a range of systemic and mucocutaneous fungal infections. Collectively, these data indicate that NP339 can be developed into a highly differentiated, first-in-class antifungal candidate for poorly served invasive and other serious fungal diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.