Abstract. We define a notion of Picard-Vessiot extension for a homogeneous linear differential equation L = 0 defined over a real differential field K with a real closed field of constants C K . When L has differential Galois group GL n over the complexification of K, we prove that a Picard-Vessiot extension for L exists over K.
We present the history of the development of Picard-Vessiot theory for linear ordinary differential equations. We are especially concerned with the condition of not adding new constants, pointed out by R. Baer. We comment on Kolchin's condition of algebraic closedness of the subfield of constants of the given differential field over which the equation is defined. Some new results concerning existence of a Picard-Vessiot extension for a homogeneous linear ordinary differential equation defined over a real differential field K with real closed field of constants F are also mentioned.
The existence of a Picard-Vessiot extension for a homogeneous linear differential equation has been established when the differential field over which the equation is defined has an algebraically closed field of constants. In this paper, we prove the existence of a Picard-Vessiot extension for a homogeneous linear differential equation defined over a real differential field K with real closed field of constants. We give an adequate definition of the differential Galois group of a Picard-Vessiot extension of a real differential field with real closed field of constants and we prove a Galois correspondence theorem for such a Picard-Vessiot extension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.