Pareto joint inversion for two or more data sets is an attractive and promising tool which eliminates target functions weighing and scaling, providing a set of acceptable solutions composing a Pareto front. In former author’s study MARIA (Modular Approach Robust Inversion Algorithm) was created as a flexible software based on global optimization engine (PSO) to obtain model parameters in process of Pareto joint inversion of two geophysical data sets. 2D magnetotelluric and gravity data were used for preliminary tests, but the software is ready to handle data from more than two geophysical methods. In this contribution, the authors’ magnetometric forward solver was implemented and integrated with MARIA. The gravity and magnetometry forward solver was verified on synthetic models. The tests were performed for different models of a dyke and showed, that even when the starting model is a homogeneous area without anomaly, it is possible to recover the shape of a small detail of the real model. Results showed that the group analysis of models on the Pareto front gives more information than the single best model. The final stage of interpretation is the raster map of Pareto front solutions analysis.
In rock mass disturbed by mining activity, distortions in the stress balance may lead to seismic energy being emitted in reactivated seismogenic structures. One way of increasing the imaging resolution of these seismically active structures is through relocation, which itself can be achieved using the cloud collapsing method. This method partially eliminates perturbations in the location of seismic energy sources concerning the actual positions of these sources. It enables events to be grouped into spatially ordered structures that may correspond to actual tectonic structures, such as fractures, fissures, or faults. We present the results of applying the collapsing method in mining seismology using a cloud of located events recorded during mining activity at one of the coalfaces in the Bobrek hard coal mine. The relocation procedure was applied to all the foci of events recorded during mining activity on face 3/503 between April 2009 and July 2010. In the relocated point cloud, two types of the linear structure responsible for generating events are automatically distinguished using the HDBSCAN algorithm: structures directly related to mining activity and structures associated with local tectonics. The location of the separated structures of the first type corresponds to the range of coalface 3/503 and the shafts delimiting earlier mined seams 507 and 509 located below. The isolated structures of the second type, with almost vertical orientation, are associated with existing zones of discontinuity that become seismically active as a result of mining activity. The identified structures lie near the biggest events recorded, which is evidence that these structures may correspond to real discontinuity zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.