The delta5-unsaturated polymethylene-interrupted fatty acid (delta5-UPIFA) contents and profiles of gymnosperm seeds are useful chemometric data for the taxonomy and phylogeny of that division, and these acids may also have some biomedical or nutritional applications. We recapitulate here all data available on pine (Pinus; the largest genus in the family Pinaceae) seed fatty acid (SFA) compositions, including 28 unpublished compositions. This overview encompasses 76 species, subspecies, and varieties, which is approximately one-half of all extant pines officially recognized at these taxon levels. Qualitatively, the SFA from all pine species analyzed so far are identical. The genus Pinus is coherently united--but this qualitative feature can be extended to the whole family Pinaceae--by the presence of delta5-UPIFA with C18 [taxoleic (5,9-18:2) and pinolenic (5,9,12-18:3) acids] and C20 chains [5,11-20:2, and sciadonic (5,11,14-20:3) acids]. Not a single pine species was found so far with any of these acids missing. Linoleic acid is almost always, except in a few cases, the prominent SFA, in the range 40-60% of total fatty acids. The second habitual SFA is oleic acid, from 12 to 30%. Exceptions, however, occur, particularly in the Cembroides subsection, where oleic acid reaches ca. 45%, a value higher than that of linoleic acid. Alpha-linolenic acid, on the other hand, is a minor constituent of pine SFA, almost always less than 1%, but that would reach 2.7% in one species (P. merkusii). The sum of saturated acids [16:0 (major) and 18:0 (minor) acids principally] is most often less than 10% of total SFA, and anteiso-17:0 acid is present in all species in amounts up to 0.3%. Regarding C18 delta5-UPIFA, taxoleic acid reaches a maximum of 4.5% of total SFA, whereas pinolenic acid varies from 0.1 to 25.3%. The very minor coniferonic (5,9,12,15-18:4) acid is less than 0.2% in all species. The C20 elongation product of pinolenic acid, bishomo-pinolenic (7,11,14-20:3) acid, is a frequent though minor SFA constituent (maximum, 0.7%). When considering C20 delta5-UPIFA, a difference is noted between the subgenera Strobus and Pinus. In the former subgenus, 5,11-20:2 and sciadonic acids are < or =0.3 and < or =1.9%, respectively, whereas in the latter subgenus, they are most often > or =0.3 and > or =2.0%, respectively. The highest values for 5,11-20:2 and sciadonic acids are 0.5% (many species) and 7.0% (P. pinaster). The 5,11,14,17-20:4 (juniperonic) acid is present occasionally in trace amounts. The highest level of total delta5-UPIFA is 30-31% (P. sylvestris), and the lowest level is 0.6% (P. monophylla). Uniting as well as discriminating features that may complement the knowledge about the taxonomy and phylogeny of pines are emphasized.
Following our previous review on Pinus spp. seed fatty acid (FA) compositions, we recapitulate here the seed FA compositions of Larix (larch), Picea (spruce), and Pseudotsuga (Douglas fir) spp. Numerous seed FA compositions not described earlier are included. Approximately 40% of all Picea taxa and one-third of Larix taxa have been analyzed so far for their seed FA compositions. Qualitatively, the seed FA compositions in the three genera studied here are the same as in Pinus spp., including in particular the same delta5-olefinic acids. However, they display a considerably lower variability in Larix and Picea spp. than in Pinus spp. An assessment of geographical variations in the seed FA composition of P. abies was made, and intraspecific dissimilarities in this species were found to be of considerably smaller amplitude than interspecific dissimilarities among other Picea species. This observation supports the use of seed FA compositions as chemotaxonomic markers, as they practically do not depend on edaphic or climatic conditions. This also shows that Picea spp. are coherently united as a group by their seed FA compositions. This also holds for Larix spp. Despite a close resemblance between Picea and Larix spp. seed FA compositions, principal component analysis indicates that the minor differences in seed FA compositions between the two genera are sufficient to allow a clear-cut individualization of the two genera. In both cases, the main FA is linoleic acid (slightly less than one-half of total FA), followed by pinolenic (5,9,12-18:3) and oleic acids. A maximum of 34% of total delta5-olefinic acids is reached in L. sibirica seeds, which appears to be the highest value found in Pinaceae seed FA. This apparent limit is discussed in terms of regio- and stereospecific distribution of delta5-olefinic acids in seed triacylglycerols. Regarding the single species of Pseudotsuga analyzed so far (P. menziesii), its seed FA composition is quite distinct from that of the other two genera, and in particular, it contains 1.2% of 14-methylhexadecanoic (anteiso-17:0) acid. In the three genera studied here, as well as in most Pinus spp., the C18 delta5-olefinic acids (5,9-18:2 and 5,9,12-18:3 acids) are present in considerably higher amounts than the C20 delta5-olefinic acids (5,11-20:2 and 5,11,14-20:3 acids).
BPA is one of the most investigated substances for its endocrine disruptor (ED) properties and it is at the same time in the center of many ED-related controversies. The analysis on how BPA fits to the regulatory identification as an ED is a challenge in terms of methodology. It is also a great opportunity to test the regulatory framework with a uniquely data-rich substance and learn valuable lessons for future cases. From this extensive database, it was considered important to engage in a detailed analysis so as to provide specific and strong evidences of ED while reflecting accurately the complexity of the response as well the multiplicity of adverse effects. An appropriate delineation of the scope of the analysis was therefore critical. Four effects namely, alterations of estrous cyclicity, mammary gland development, brain development and memory function, and metabolism, were considered to provide solid evidence of ED-mediated effects of BPA.
This study examines the effect of the column operating temperature of 100 m SP-2560 and CP-Sil 88 capillary gas chromatographic (GC) columns on the separation of cis- and trans-octadecenoic (18:1) isomers in partially hydrogenated vegetable oils. The overlapping GC peaks were measured at column isothermal temperatures of 170, 175, 180, 185, and 190°C. With both columns, isothermal operation at 180°C produced the fewest overlapping peaks of the cis and trans isomers. At this temperature, all trans-18:1 isomers, except 13t-18:1 (t = trans), 14t-18:1, and 15t-18:1 isomers were resolved from 14t-18:1, the cis-18:1 isomers. The peaks of the 13t-18:1 and 14t-18:1 isomer pair, which always elute together, overlapped peaks of the 6c-18:1 (c = cis), 7c-18:1, and 8c-18:1 isomers; the peak of the 15t-18:1 isomer overlapped the major cis-18:1 peak, which was mainly due to 9c-18:1. Isothermal operations above or below 180°C produced some additional overlapping problems. At 185 and 190°C, the peaks of the 16t-18:1 and 13c-18:1 isomers overlapped. At 175 and 170°C, the 16t-18:1 peak overlapped the 14c-18:1 peak, and the peaks of the 13t + 14t-18:1 isomer pair partially overlapped the major cis-18:1 peak. The separation of 11c-20:1 and α-linolenic acid and its geometric isomers was also affected by the column operating temperature. Isothermal operation of the SP-2560 column at 180°C produced a baseline separation of 11c-20:1 and α-linolenic acid and its geometric isomers, whereas with the CP-Sil 88 column the best resolution was obtained at 170°C. The results of this study show that the SP-2560 capillary column has a slight advantage over the CP-Sil 88 column for the simultaneous resolution of all the fatty acids generally found in partially hydrogenated vegetable oils.
The seed fatty acid (FA) compositions of Abietoids (Abies, Cedrus, Hesperopeuce, Keteleeria, Pseudolarix, and Tsuga) are reviewed in the present study in conclusion to our survey of Pinaceae seed FA compositions. Many unpublished data are given. Abietoids and Pinoids (Pinus, Larix, Picea, and Pseudotsuga)-constituting the family Pinaceae-are united by the presence of several delta5-olefinic acids, taxoleic (5,9-18:2), pinolenic (5,9,12-18:3), coniferonic (5,9,12,15-1 8:4), keteleeronic (5,11-20:2), and sciadonic (5,11,14-20:3) acids, and of 14-methyl hexadecanoic (anteiso-17:0) acid. These acids seldom occur in angiosperm seeds. The proportions of individual delta5-olefinic acids, however, differ between Pinoids and Abietoids. In the first group, pinolenic acid is much greater than taxoleic acid, whereas in the second group, pinolenic acid is greater than or equal to taxoleic acid. Moreover, taxoleic acid in Abietoids is much greater than taxoleic acid in Pinoids, an apparent limit between the two subfamilies being about 4.5% of that acid relative to total FA. Tsuga spp. appear to be a major exception, as their seed FA compositions are much like those of species from the Pinoid group. In this respect, Hesperopeuce mertensiana, also known as Tsuga mertensiana, has little in common with Abietoids and fits the general FA pattern of Pinoids well. Tsuga spp. and H. mertensiana, from their seed FA compositions, should perhaps be separated from the Abietoid group and their taxonomic position revised. It is suggested that a "Tsugoid" subfamily be created, with seed FA in compliance with the Pinoid pattern and other botanical and immunological criteria of the Abietoid type. All Pinaceae genera, with the exception of Pinus, are quite homogeneous when considering their overall seed FA compositions, including delta5-olefinic acids. In all cases but one (Pinus), variations from one species to another inside a given genus are of small amplitude. Pinus spp., on the other hand, have highly variable levels of delta5-olefinic acids in their FA compositions, particularly when sections (e.g., Cembroides vs. Pinus sections) or subsections (e.g., Flexiles and Cembrae subsections from the section Strobus) are compared, although they show qualitatively the same FA patterns characteristic of Pinoids. Multicomponent analysis of Abietoid seed FA allowed grouping of individual species into genera that coincide with the same genera otherwise characterized by more classical botanical criteria. Our studies exemplify how seed FA compositions, particularly owing to the presence of delta5-olefinic acids, may be useful in sustaining and adding some precision to existing taxonomy of the major family of gymnosperms, Pinaceae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.