Iron deficiency (ID) and human immunodeficiency virus (HIV) infection frequently coexist. Little data exist on ID in HIV-infected individuals, partly because the iron marker ferritin is altered by inflammation common in HIV infection. We measured iron biomarkers (ferritin, soluble transferrin receptor [sTfR], hepcidin) and red cell indices (hemoglobin, mean corpuscular volume [MCV]) in newly diagnosed, antiretroviral therapy-naive, HIV-infected ( = 138) and uninfected ( = 52) Kenyan adults enrolled in a study of the immune response to malaria. We compared markers between infected and uninfected groups with test and Wilcoxon Rank-Sum, used Spearman correlation to determine the association between iron and inflammatory markers, and applied logistic regression to determine which markers best predicted anemia. HIV-infected individuals had lower hemoglobin ( < 0.001), lower MCV ( < 0.001), higher sTfR ( = 0.003), and a greater prevalence of ID (sTfR > 8.3 mg/L) than uninfected individuals. Ferritin was elevated in HIV-infected individuals and was more strongly correlated with C-reactive protein (ρ = 0.43, < 0.001) and hepcidin (ρ = 0.69, < 0.001) than with hemoglobin. The best predictor of anemia in HIV-infected participants was sTfR, with a one log-unit increase in sTfR associated with a 6-fold increase in the odds of anemia (odds ratio = 6.3, 95% confidence interval: 1.8-21.8). These data suggest a significant burden of ID among treatment-naive HIV-infected Kenyan adults. Soluble transferrin receptor may be a reliable marker of ID in HIV-mediated inflammation.
Background Further reductions in malaria incidence as more countries approach malaria elimination require the identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmodium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individuals who are potentially capable of onward transmission. Methods In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa–Kipsamoite), asymptomatic P. falciparum infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic individuals. Results The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across all communities, children aged 11–15 years account for the greatest proportion total and sub-microscopic asymptomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detection. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR. Conclusions This assessment of parasitaemia and gametocytaemia in three communities with different transmission intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. falciparum. Experimental studies are needed to definitively determine whether the low-density infections in communities such as Ajigo and Webuye contribute significantly to malaria transmission.
Background HIV infection is associated with more frequent and severe episodes of malaria and may be the result of altered malaria-specific B cell responses. However, it is poorly understood how HIV and the associated lymphopenia and immune activation affect malaria-specific antibody responses. Methods HIV infected and uninfected adults were recruited from Bondo subcounty hospital in Western Kenya at the time of HIV testing (antiretroviral and co-trimoxazole prophylaxis naïve). Total and Plasmodium falciparum apical membrane antigen-1 (AMA1) and glutamate rich protein-R0 (GLURP-R0) specific IgM, IgG and IgG subclass concentrations was measured in 129 and 52 of recruited HIV-infected and uninfected individuals, respectively. In addition, HIV-1 viral load (VL), CD4 + T cell count, and C-reactive protein (CRP) concentration was quantified in study participants. Antibody levels were compared based on HIV status and the associations of antibody concentration with HIV-1 VL, CD4 + count, and CRP levels was measured using Spearman correlation testing. Results Among study participants, concentrations of IgM, IgG1 and IgG3 antibodies to AMA1 and GLURP-R0 were higher in HIV infected individuals compared to uninfected individuals (all p < 0.001). The IgG3 to IgG1 ratio to both AMA1 and GLURP-R0 was also significantly higher in HIV-infected individuals ( p = 0.02). In HIV-infected participants, HIV-1 VL and CRP were weakly correlated with AMA1 and GLURP-R0 specific IgM and IgG1 concentrations and total (not antigen specific) IgM, IgG, IgG1, and IgG3 concentrations (all p < 0.05), suggesting that these changes are related in part to viral load and inflammation. Conclusions Overall, HIV infection leads to a total and malaria antigen-specific immunoglobulin production bias towards higher levels of IgM, IgG1, and IgG3, and HIV-1 viraemia and systemic inflammation are weakly correlated with these changes. Further assessments of antibody affinity and function and correlation with risk of clinical malaria, will help to better define the effects of HIV infection on clinical and biological immunity to malaria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.