The sigma receptor (σR) is a chaperone protein residing at mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), where it modulates Ca exchange between the ER and mitochondria by interacting with inositol-1,4,5 trisphosphate receptors (IPRs). The σR is highly expressed in the central nervous system and its activation stimulates neuromodulation and neuroprotection, for instance in Alzheimer's disease (AD) models in vitro and in vivo. σR effects on mitochondria pathophysiology and the downstream signaling are still not fully understood. We here evaluated the impacts of σR ligands in mouse mitochondria preparations on reactive oxygen species (ROS) production, mitochondrial respiration, and complex activities, in physiological condition and after direct application of amyloid Aβ peptide. σR agonists (2-(4-morpholinethyl)-1-phenylcyclohexanecarboxylate hydrochloride (PRE-084), tetrahydro-N,N-dimethyl-5,5-diphenyl-3-furanmethanamine (ANAVEX1-41, AN1-41), (S)-1-(2,8-dimethyl-1-thia-3,8-diazaspiro[4.5]dec-3-yl)-3-(1H-indol-3-yl)propan-1-one (ANAVEX3-71, AN3-71), dehydroepiandrosterone-3 sulfate (DHEA), donepezil) increased mitochondrial ROS in a σR antagonist-sensitive manner but decreased Aβ-induced increase in ROS. σR ligands (agonists or antagonists) did not impact respiration but attenuated Aβ-induced alteration. σR agonists (PRE-084, AN1-41, tetrahydro-N,N-dimethyl-2,2-diphenyl-3-furanmethanamine hydrochloride (ANAVEX2-73, AN2-73), AN3-71) increased complex I activity, in a Ca-dependent and σR antagonist-sensitive manner. σR ligands failed to affect complex II, III, and IV activities. The increase in complex I activity explain the σR-induced increase in ROS since ligands failed to affect other sources of ROS accumulation in mitochondria and homogenates, namely NADPH oxidase (NOX) and superoxide dismutase (SOD) activities. Furthermore, Aβ significantly decreased the activity of complexes I and IV and σR agonists attenuated the Aβ-induced complex I and IV dysfunctions. σR activity in mitochondria therefore results in a Ying-Yang effect, by triggering moderate ROS increase acting as a physiological signal and promoting a marked anti-oxidant effect in pathological (Aβ) conditions.