Strain and vorticity analysis of two Late Palaeozoic high-strain zones from the southern Appalachian Piedmont indicates that these zones experienced general shear transpression with a monoclinic to triclinic symmetry. Granitic rocks in the Brookneal highstrain zone from the southwestern Virginia Piedmont were transformed into mylonites under greenschist facies conditions. Sectional strains, estimated from quartz grain shapes, in mylonites range from three to ten and three-dimensional fabrics record flattening strains.The mean vorticity number (Wm) estimated with the Rs/O method ranges from 0.3 to 0.95.In the central Virginia Piedmont, lower amphibolite facies deformation in the Spotsylvania high-strain zone affected biotite gneisses, amphibolites, and granitic pegmatites. Minimum sectional strains, estimated from folded and boudinaged pegmatite dykes, of 8-20 are common and three-dimensional strains are dominantly constrictional. Porphyroclast hyperbolic distribution analysis of ultramylonites yields Wn values from 0.4 to 0.8. The kinematic significance of these transpressional high-strain zones is threefold: they record tens to hundreds of kilometres of strike-slip offset; 40 to 70% contraction normal to the zone; and significant orogen-parallel material elongation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.