Noninvasive quantification of myocardial fibrosis in end-stage renal disease is challenging. Gadolinium contrast agents previously used for cardiac magnetic resonance imaging (MRI) are contraindicated because of an association with nephrogenic systemic fibrosis. In other populations, increased myocardial native T1 times on cardiac MRI have been shown to be a surrogate marker of myocardial fibrosis. We applied this method to 33 incident hemodialysis patients and 28 age- and sex-matched healthy volunteers who underwent MRI at 3.0T. Native T1 relaxation times and feature tracking–derived global longitudinal strain as potential markers of fibrosis were compared and associated with cardiac biomarkers. Left ventricular mass indices were higher in the hemodialysis than the control group. Global, Septal and midseptal T1 times were all significantly higher in the hemodialysis group (global T1 hemodialysis 1171 ± 27 ms vs. 1154 ± 32 ms; septal T1 hemodialysis 1184 ± 29 ms vs. 1163 ± 30 ms; and midseptal T1 hemodialysis 1184 ± 34 ms vs. 1161 ± 29 ms). In the hemodialysis group, T1 times correlated with left ventricular mass indices. Septal T1 times correlated with troponin and electrocardiogram-corrected QT interval. The peak global longitudinal strain was significantly reduced in the hemodialysis group (hemodialysis -17.7±5.3% vs. -21.8±6.2%). For hemodialysis patients, the peak global longitudinal strain significantly correlated with left ventricular mass indices (R = 0.426), and a trend was seen for correlation with galectin-3, a biomarker of cardiac fibrosis. Thus, cardiac tissue properties of hemodialysis patients consistent with myocardial fibrosis can be determined noninvasively and associated with multiple structural and functional abnormalities.
Renal biopsy is rare in PSS and often reveals diverse pathological findings. Glomerulonephritis, as compared with tubulointerstitial nephritis, is associated with higher early mortality. Further studies are needed to evaluate the utility of renal biopsy and its impact on disease management.
BackgroundNative T1 mapping is a cardiovascular magnetic resonance (CMR) technique that associates with markers of fibrosis and strain in hemodialysis patients. The reproducibility of T1 mapping in hemodialysis patients, prone to changes in fluid status, is unknown. Accurate quantification of myocardial fibrosis in this population has prognostic potential.MethodsUsing 3 Tesla CMR, we report the results of 1) the inter-study, inter-observer and intra-observer reproducibility of native T1 mapping in 10 hemodialysis patients; 2) inter-study reproducibility of left ventricular (LV) structure and function in 10 hemodialysis patients; 3) the agreement of native T1 map and native T1 phantom analyses between two centres in 20 hemodialysis patients; 4) the effect of changes in markers of fluid status on native T1 values in 10 hemodialysis patients.ResultsInter-study, inter-observer and intra-observer variability of native T1 mapping were excellent with co-efficients of variation (CoV) of 0.7, 0.3 and 0.4% respectively. Inter-study CoV for LV structure and function were: LV mass = 1%; ejection fraction = 1.1%; LV end-diastolic volume = 5.2%; LV end-systolic volume = 5.6%. Inter-centre variability of analysis techniques were excellent with CoV for basal and mid-native T1 slices between 0.8–1.2%. Phantom analyses showed comparable native T1 times between centres, despite different scanners and acquisition sequences (centre 1: 1192.7 ± 7.5 ms, centre 2: 1205.5 ± 5 ms). For the 10 patients who underwent inter-study testing, change in body weight (Δweight) between scans correlated with change in LV end-diastolic volume (ΔLVEDV) (r = 0.682;P = 0.03) representing altered fluid status between scans. There were no correlations between change in native T1 between scans (ΔT1) and ΔLVEDV or Δweight (P > 0.6). Linear regression confirmed ΔT1 was unaffected by ΔLVEDV or Δweight (P > 0.59).ConclusionsMyocardial native T1 is reproducible in HD patients and unaffected by changes in fluid status at the levels we observed. Native T1 mapping is a potential imaging biomarker for myocardial fibrosis in patients with end-stage renal disease.Electronic supplementary materialThe online version of this article (doi:10.1186/s12968-017-0337-7) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.