Introduction Antiphospholipid syndrome (APS) is an autoimmune disorder manifested by thromboembolic events, recurrent spontaneous abortions and elevated titers of circulating antiphospholipid antibodies. In addition, the presence of antiphospholipid antibodies seems to confer a fivefold higher risk for stroke or transient ischemic attack. Although the major antigen of APS is β2 glycoprotein I, it is now well established that antiphospholipid antibodies are heterogeneous and bind to various targets. Recently, antibodies to Annexin A2 (ANXA2) have been reported in APS. This is of special interest since data indicated ANXA2 as a key player in fibrinolysis. Therefore, in the present study we assessed whether anti-ANXA2 antibodies play a pathological role in thrombosis associated disease. Materials and Methods Mice were induced to produce anti-ANXA2 antibodies by immunization with ANXA2 (iANXA2) and control mice were immunized with adjuvant only. A middle cerebral artery occlusion stroke model was applied to the mice. The outcome of stroke severity was assessed and compared between the two groups. Results Our results indicate that antibodies to ANXA2 lead to a more severe stroke as demonstrated by a significant larger stroke infarct volume (iANXA2 133.9 ± 3.3 mm3 and control 113.7 ± 7.4 mm3; p = 0.017) and a more severe neurological outcome (iANXA2 2.2 ± 0.2, and control 1.5 ± 0.18; p = 0.03). Conclusions This study supports the hypothesis that auto-antibodies to ANXA2 are an independent risk factor for cerebral thrombosis. Consequently, we propose screening for anti-ANXA2 antibodies should be more widely used and patients that exhibit the manifestations of APS should be closely monitored by physicians.
Stoke is a severe condition with a narrow treatment window and high mortality rate (Feigin et al., 2016) caused by either blockage (ischemic) or rupture (hemorrhagic) of blood vessels. The damage is often permanent and irreversible and ischemic strokes are the most prevalent type, accounting for 82%-86% of all cases (Johnson et al., 2019). The final step in the coagulation cascade is the cleavage of fibrinogen into fibrin by thrombin (Bardehle et al., 2015). Additionally, thrombin regulates fibrinolysis and enhances the synthesis of a serine protease, tPA (Mandl-Weber et al., 1999). Once a blood clot is formed, tPA binds to fibrin and converts the zymogen plasminogen, already present in the clot, into the broad-spectrum serine protease
Background Ischemic stroke is a common and debilitating disease with limited treatment options. Protease activated receptor 1 (PAR1) is a fundamental cell signaling mediator in the central nervous system (CNS). It can be activated by many proteases including thrombin and plasmin, with various down-stream effects, following brain ischemia. Methods A permanent middle cerebral artery occlusion (PMCAo) model was used in PAR1 KO and WT C57BL/6J male mice. Mice were evaluated for neurological deficits (neurological severity score, NSS), infarct volume (Tetrazolium Chloride, TTC), and for plasmin and thrombin activity in brain slices. Results Significantly low levels of plasmin and thrombin activities were found in PAR1 KO compared to WT (1.6±0.4 vs. 3.2±0.6 ng/μl, p<0.05 and 17.2±1.0 vs. 21.2±1.0 mu/ml, p<0.01, respectively) along with a decreased infarct volume (178.9±14.3, 134.4±13.3 mm3, p<0.05). Conclusions PAR1 KO mice have smaller infarcts, with lower thrombin and plasmin activity levels. These findings may suggest that modulation of PAR1 is a potential target for future pharmacological treatment of ischemic stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.