Exchange rates are affected by the impact of disparate types of new information as well as the couplings between these modalities. Previous work mainly predicted exchange rates solely based on market indicators and therefore achieved unsatisfactory results. In response to such an issue, this study develops an inventive multimodal fusion-based long short-term memory (MF-LSTM) model to forecast the USD/CNY exchange rate. Our model consists of two parallel LSTM modules that extract abstract features from each modality of information and a shared representation layer that fuses these features. In terms of the text modality, bidirectional encoder representations from transformers (BERT) is applied to conduct a sentiment analysis on social media microblogs. Compared to previous studies, we incorporate not only market indicators but also investor sentiments into consideration, treating the two types of data differently to match their exclusive characteristics. In addition, we apply the multimodal fusion technique and contrive a deep coupled model rather than a shallow and simple model to reflect the couplings between the two modalities. As a consequence, the experimental results obtained over a 15month period exhibit the superiority of the proposed approach over nine baseline algorithms. The purpose of our study is to demonstrate that it is practicable and effective to incorporate multimodal fusion into financial time series forecasting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.