A nonlocal, energy based impact ionisation model for bipolar transistors is implemented into a general purpose circuit simulator. With respect to conventional, either empirical or electric field based, models, the proposed approach enables a more physical and accurate description of impact ionisation effects in modern, high speed bipolar transistors, where non-negligible nonstationary transport effects take place as a consequence of the strong spatial variations in the electric field at the base-collector junction. The conventional base resistance model is also modified, to take into account the base resistance dependence on bias in the presence of an impact ionisation induced reverse base current. Neglecting the influence of the reverse base current on the base resistance can result in an underestimation of the degradation of both DC and switching performance of bipolar transistors due to impact ionisation. The implemented models are validated by comparison with experimental results obtained from devices of two different technologies
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.