The structure and kinetics of fibrin gels grown from fibrinogen solutions under quasiphysiological conditions, but in absence of Ca++, were investigated by means of elastic light scattering. By combining classical light scattering and low-angle elastic light scattering, an overall wave-vector range of about three decades was spanned, from q approximately 3 x 10(2) to q approximately 3 x 10(5) cm(-1). The scattered intensity distribution of the gels was measured in absolute units and fitted to a single function, which was able to reproduce accurately the data over the entire wave-vector range. From the fitting, it was possible to estimate the average diameter d of the fibrin fibers, the average crossover length xi of the gel, and establish the fractal nature of the gel structure, with a measure of its fractal dimension D(m). The measure of the intensity in absolute units also allowed the estimate of the density rho of the fibrin fibers and provided an independent measure of their size. The kinetics of formation of the gel was described in terms of a simple growth model: the scaffold of the network is formed very early in the course of the gelation process, at a "networking time," t(n), which is much smaller than the time required to form the final gel. At times t>t(n), the gel structure remains substantially unchanged and the successive growth consists only in a thickening of the gel fibers. Gels prepared under the same physical-chemical conditions, but at different fibrinogen concentrations, exhibited rather similar structures and kinetics, showing that the modalities of the gelation process are mainly governed by the solution conditions, and only secondarily by the fibrinogen concentration. For gels at fibrinogen concentration of approximately 0.24 mg/ml, the gel parameters were d approximately 130 nm, xi approximately 27 microm, D(m) approximately 1.3, and rho approximately 0.4 g/cm(3). Our d and rho values are in very good agreement with electron microscopy- and turbidity-derived literature data, respectively, while xi seems to be related to the mesh size of the initial scaffold formed at t(n), rather than to the mesh size of the final aged gel.
A hot stable field-reversed configuration (FRC) has been produced in the C-2 experiment by colliding and merging two high-β plasmoids preformed by the dynamic version of field-reversed θ-pinch technology. The merging process exhibits the highest poloidal flux amplification obtained in a magnetic confinement system (over tenfold increase). Most of the kinetic energy is converted into thermal energy with total temperature (T{i}+T{e}) exceeding 0.5 keV. The final FRC state exhibits a record FRC lifetime with flux confinement approaching classical values. These findings should have significant implications for fusion research and the physics of magnetic reconnection.
A modified version of the nonlinear iterative Chahine algorithm is presented and applied to the inversion of spectral extinction data for particle sizing. Simulated data were generated in a λ range of 0.2-2 µm,and particle-size distributions were recovered with radii in the range of 0.14-1.4 µm. Our results show that distributions and sample concentrations can be recovered to a high degree of accuracy when the indices of refraction of the sample and of the solvent are known. The inversion method needs no a priori assumptions and no constraints on the particle distributions. Compared with the algorithm originally proposed by Chahine, our method is much more stable with respect to random noise, permits a better quality of the retrieved distributions, and improves the overall reliability of the fitting. The accuracy and resolution of the method as functions of noise were investigated and showed that the retrieved distributions are quite reliable up to noise levels of several rms percent in the data. The sensitivity to errors in the real and imaginary parts of the refraction index of the particles was also examined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.