Source level and frequency are important in determining how far an acoustic signal can travel. However, in some species these sound characteristics have been found to be biomechanically linked, and therefore cannot be modified independently to achieve optimal transmission. This study investigates the variability in source levels and their relationship with frequency in the songs of humpback whales (Megaptera novaeangliae). Songs were recorded off eastern Australia using a fixed hydrophone array deployed on the whales' migratory corridor. Singing whales were acoustically tracked. An empirical, frequency-dependent model was used to estimate transmission loss. Source levels and frequency were measured for 2408 song units from 19 singers. Source levels varied from 138 to 187 dB re 1 μPa at 1 m (root mean squared), while peak frequency ranged between 52 and 3877 Hz. Much of the variability in source levels was accounted for by differences between the unit types, with mean source levels for each unit type varying by up to 17 dB. Source levels were negatively correlated with peak frequency and decreased by 2.3 dB per octave. The negative correlation between source levels and frequency is consistent with the presence of an air-filled resonator in the whales' sound production system.
Animal communication systems evolved in the presence of noise generated by natural sources. Many species can increase the source levels of their sounds to maintain effective communication in elevated noise conditions, i.e. they have a Lombard response. Human activities generate additional noise in the environment creating further challenges for these animals. Male humpback whales are known to adjust the source levels of their songs in response to wind noise, which although variable is always present in the ocean. Our study investigated whether this Lombard response increases when singing males are exposed to additional noise generated by motor vessels. Humpback whale singers were recorded off eastern Australia using a fixed hydrophone array. The source levels of the songs produced while the singers were exposed to varying levels of wind noise and vessel noise were measured. Our results show that, even when vessel noise is dominant, singing males still adjust the source levels of their songs to compensate for the underlying wind noise, and do not further increase their source levels to compensate for the additional noise produced by the vessel. Understanding humpback whales' response to noise is important for developing mitigation policies for anthropogenic activities at sea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.