In this study, the possibility of producing stable O/W emulsions incorporating beta-carotene in oil droplets surrounded by multiple-layer interfacial membranes has been demonstrated. Emulsions were prepared using a two-stage process by homogenization, which relied on the adsorption of chitosan to anionic droplets coated with soybean soluble polysaccharides (SSPS). Results showed that the zeta-potential, particle size, and rheological properties of emulsions were greatly dependent on the chitosan concentration. The electrical charge on the droplets increased from -34 to 58.2 mV as the chitosan concentration was increased from 0 to 2 wt %, which indicated that chitosan adsorbed to the droplet surfaces. The mean particle diameter of the emulsions increased dramatically with the rise of chitosan concentration from 0 to 0.33 wt %, indicating the formation of large aggregated structures. At chitosan concentrations above 0.33 wt %, the mean particle diameter of emulsions decreased and reached a minimum value of 0.79 mum at a chitosan concentration of 0.5 wt %. Dynamic oscillatory shear tests indicated that the viscoelastic behavior could be enhanced by the adsorption of chitosan onto the SSPS-coated droplet surfaces. Chitosan concentration had a significant (p < 0.05) impact on the stability of beta-carotene. The least degradation occurred in the emulsion with chitosan concentration of 0.5%. These results implied that the physicochemical stability of beta-carotene emulsions has been improved by the adsorption of chitosan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.