The purpose of this study was to compare the steadiness and discharge rate of motor units during submaximal contractions performed by young and old adults. Subjects performed isometric and slow shortening and lengthening contractions with the first dorsal interosseous muscle. The steadiness of the isometric and slow anisometric contractions was less for the old subjects compared with young subjects, especially at the lower target forces and with the lightest loads. Furthermore, the steadiness of the lengthening contractions was less compared with the shortening contractions for the old subjects. Although the mean discharge rates of motor units were not different for the two groups of subjects, the variability of the discharge rates was greater for the old subjects during the isometric and anisometric contractions. We conclude that a more variable discharge by single motor units probably contributes to the reduced ability of old adults to perform steady muscle contractions.
The purpose of the study was to determine the association between steadiness and activation of the agonist and antagonist muscles during isometric and anisometric contractions. Young (n = 14) and old (n = 15) adults used the first dorsal interosseus muscle to perform constant-force and constant-load tasks (2.5, 5, 20, 50, and 75% maximum) with the left index finger. Steadiness was quantified as the coefficient of variation of force and the SD of acceleration normalized to the load lifted. The old adults were less steady at most target forces with isometric contractions (2.5, 5, and 50%) and with most loads during the anisometric contractions (2.5, 5, and 20%). Furthermore, the old adults were less steady when performing lengthening contractions (up to 50%) compared with shortening contractions, whereas there was no difference for young adults. The reduced steadiness exhibited by the old adults during these tasks was not associated with differences in the average level of agonist muscle electromyogram or with coactivation of the antagonist muscle.
The purpose of this study was to compare the steadiness and discharge rate of motor units during submaximal contractions performed by young and old adults. Subjects performed isometric and slow shortening and lengthening contractions with the first dorsal interosseous muscle. The steadiness of the isometric and slow anisometric contractions was less for the old subjects compared with young subjects, especially at the lower target forces and with the lightest loads. Furthermore, the steadiness of the lengthening contractions was less compared with the shortening contractions for the old subjects. Although the mean discharge rates of motor units were not different for the two groups of subjects, the variability of the discharge rates was greater for the old subjects during the isometric and anisometric contractions. We conclude that a more variable discharge by single motor units probably contributes to the reduced ability of old adults to perform steady muscle contractions.
When old adults participate in a strength-training program with heavy loads, they experience an increase in muscle strength and an improvement in the steadiness of submaximal isometric contractions. The purpose of this study was to determine the effect of light- and heavy-load strength training on the ability of old adults to perform steady submaximal isometric and anisometric contractions. Thirty-two old adults (60-91 yr) participated in a 4-wk training program of a hand muscle. Both the light- and heavy-load groups increased one-repetition maximum and maximal voluntary contraction (MVC) strength and experienced similar improvements in the steadiness of the isometric and shortening and lengthening contractions. The increase in MVC strength was greater for the heavy-load group and could not be explained by changes in muscle activation. Before training, the lengthening contractions were less steady than the shortening contractions with the lightest loads (10% MVC). After training, there was no difference in steadiness between the shortening and lengthening contractions, except with the lightest load. These improvements were associated with a reduced level of muscle activation, especially during the lengthening contractions.
The purpose of this study was to determine the minimum number of contractions that are needed to detect an increase in the muscle proton spin-spin relaxation time (T2) at a given exercise intensity. Five healthy human subjects performed five sets of an exercise that included concentric and eccentric contractions of the elbow-flexor muscles with loads that were 25 or 80% of maximum. With the 80% load, the five sets involved 1, 2, 5, 10, or 20 repetitions of the exercise; with the 25% load the five sets were 2, 5, 10, 20, or 40 repetitions. The upper arm of each subject was imaged before and immediately after each set of the exercise. Spin-echo images (repetition time/echo time = 2,000 ms/30, 60, 90, and 120 ms) were collected using an extremity coil, and T2 values were calculated. The signal intensity was measured from the elbow-flexor and -extensor muscles and from the bone marrow of the humerus. With the 80% load, T2 increased in the short head of the biceps brachii after two repetitions of the elbow exercise and after five repetitions in the brachialis and the long head of the biceps brachii. With the 25% load, T2 became longer after five repetitions of the exercise for the short head of the biceps brachii and after 10 repetitions for the brachialis and the long head of the biceps brachii. T2 varied linearly with the number of contraction repetitions for each of the elbow-flexor muscles at either load (r2 > or = 0.97, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.