Memory encoding occurs rapidly, but the consolidation of memory in the neocortex has long been held to be a more gradual process. We now report, however, that systems consolidation can occur extremely quickly if an associative “schema” into which new information is incorporated has previously been created. In experiments using a hippocampal-dependent paired-associate task for rats, the memory of flavor-place associations became persistent over time as a putative neocortical schema gradually developed. New traces, trained for only one trial, then became assimilated and rapidly hippocampal-independent. Schemas also played a causal role in the creation of lasting associative memory representations during one-trial learning. The concept of neocortical schemas may unite psychological accounts of knowledge structures with neurobiological theories of systems memory consolidation.
When new learning occurs against the background of established prior knowledge, relevant new information can be assimilated into a schema and thereby expand the knowledge base. An animal model of this important component of memory consolidation reveals that systems memory consolidation can be very fast. In experiments with rats, we found that the hippocampal-dependent learning of new paired associates is associated with a striking up-regulation of immediate early genes in the prelimbic region of the medial prefrontal cortex, and that pharmacological interventions targeted at that area can prevent both new learning and the recall of remotely and even recently consolidated information. These findings challenge the concept of distinct fast (hippocampal) and slow (cortical) learning systems, and shed new light on the neural mechanisms of memory assimilation into schemas.
Three experiments investigated the role in memory processing of dopamine (DA) afferents to the hippocampus (HPC) that arise from the ventral tegmental area. One hypothesis is that D 1 /D 5 receptor activation in HPC is necessary for the encoding of novel, episodic-like information; the other is that DA activation ensures the greater temporal persistence of transient hippocampal memory traces. Rats (n ϭ 35) were trained, in separate experiments using an episodic-like memory task, to learn six paired associates (PAs) in an "event arena" involving a repeated association between specific flavors of food and locations in space. After 6 weeks of training, rats had learned a "schema" such that two new paired associates could be acquired in a single trial in one session (episodic-like memory). We show that
In humans and in animals, mental schemas can store information within an associative framework that enables rapid and efficient assimilation of new information. Using a hippocampal-dependent paired-associate task, we now report that the anterior cingulate cortex is part of a neocortical network of schema storage with NMDA receptor-mediated transmission critical for information updating, and AMPA receptor-mediated transmission required for the expression and updating of stored information.
In humans, most of our new memories are in some way or another related to what we have already experienced. However, in memory research, especially in non-human animal research, subjects are often mostly naïve to the world. But we know that previous knowledge will change how memories are processed and which brain areas are critical at which time point. Each process from encoding, consolidation, to memory retrieval will be affected. Here, we summarise previous knowledge effects on the neurobiology of memory in both humans and non-human animals, with a special focus on schemas – associative network structures. Furthermore, we propose a new theory on how there may be a continuous gradient from naïve to expert, which would modulate the importance and role of brain areas, such as the hippocampus and prefrontal cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.