The study aims to investigate the radiation-induced brain functional alterations in nasopharyngeal carcinoma (NPC) patients who received radiotherapy (RT) using functional magnetic resonance imaging (fMRI) and statistic scale.The fMRI data of 35 NPC patients with RT and 24 demographically matched untreated NPC patients were acquired. Montreal Cognitive Assessment (MoCA) was also measured to evaluate their global cognition performance. Multivariate pattern analysis was performed to find the significantly altered functional connections between these 2 groups, while the linear correlation level was detected between the altered functional connections and the MoCA scores.Forty-five notably altered functional connections were found, which were mainly located between 3 brain networks, the cerebellum, sensorimotor, and cingulo-opercular. With strictly false discovery rate correction, 5 altered functional connections were shown to have significant linear correlations with the MoCA scores, that is, the connections between the vermis and hippocampus, cerebellum lobule VI and dorsolateral prefrontal cortex, precuneus and dorsal frontal cortex, cuneus and middle occipital lobe, and insula and cuneus. Besides, the connectivity between the vermis and hippocampus was also significantly correlated with the attention score, 1 of the 7 subscores of the MoCA.The present study provides new insights into the radiation-induced functional connectivity impairments in NPC patients. The results showed that the RT may induce the cognitive impairments, especially the attention alterations. The 45 altered functional connections, especially the 5 altered functional connections that were significantly correlated to the MoCA scores, may serve as the potential biomarkers of the RT-induced brain functional impairments and provide valuable targets for further functional recovery treatment.
Abstract. The aim of the present study was to investigate the microstructural characteristics of the brain lobes following radiotherapy (RT) for patients with nasopharyngeal carcinoma (NPC) at distinct times. Diffusion tensor imaging (DTI) and 3D-T1-weighted imaging was performed in 70 age-and sex-matched subjects, 24 of whom were pre-treatment patients. The patients were divided into three groups, according to the time following completion of RT. Fractional anisotropy (FA) and gray matter (GM) volume were determined. The DTI data were analyzed using tract-based spatial statistics and the GM volume was analyzed using voxel-based morphometry (VBM). Compared with the pre-RT group, the mean FA values in the left parietal lobe white matter (WM) and right cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05). In addition, the mean FA values in the right parietal lobe WM decreased significantly in the post-RT 6-12 month group (P<0.05), compared with the pre-RT group. The FA level in the right temporal lobe remained significantly decreased, compared with that in the pre-RT group (P<0.05) for 1 year after RT. Furthermore, compared with pre-RT group, the GM volume in the bilateral frontal lobe, right occipital lobe, left parietal lobe, right temporal lobe and left cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05), and in the bilateral temporal lobe, parietal lobe, right frontal lobe and left cerebellum, the GM volume decreased significantly in the post-RT 6-12 month group (P<0.05). The GM volume in the right temporal lobe, bilateral frontal lobe and bilateral cerebellum remained significantly decreased compared with that in the pre-RT group (P<0.05) for 1 year after RT. A combination of DTI and VBM may be used to determine radiation-induced brain injury in patients treated for NPC.
The current study aimed to investigate the altered cerebellar-cerebral functional connectivity (FC) induced by radiotherapy to nasopharyngeal carcinoma (NPC) patients. Twenty-four NPC patients without treatment, and 35 NPC patients receiving radiotherapy underwent functional MRI scanning. Montreal cognitive assessment (MoCA) was performed to evaluate the cognitive status of all participants. FC between 10 predefined cerebellar seeds, which were demonstrated to be involved in different brain functional networks, and all brain voxels was obtained for each participant. Using a second-level two-sample t-test, three significantly different FCs between the two patient groups were found, including the connections between the left lobule VIII and the right medial frontal gyrus, the left lobule VIII and the right crus I, and the right lobule VIIb and the right fusiform gyrus. The altered cerebellar-cerebral FCs were also significantly correlated to the MoCA score, as well as the attention score, one of the seven subscores in MoCA. We suggested that the altered cerebellar-cerebral FCs may underlie the radiation-induced cognitive deficits in NPC patients, especially in the domain of attention. Furthermore, considering the functional networks in which the altered connections involved, the anticorrelation between the default network and dorsal attention network may be impaired, and the mediating function of the frontoparietal network to dorsal attention network may be disrupted. The significantly altered cerebellar-cerebral FC may serve as the potential biomarker in revealing the radiation-induced functional abnormalities and may help in the early intervention to the cognitive impairment.
BackgroundThe purpose/aim of this study was to 1) use magnetic resonance diffusion tensor imaging (DTI), fibre bundle/tract-based spatial statistics (TBSS) and machine learning methods to study changes in the white matter (WM) structure and whole brain WM network in different periods of the nasopharyngeal carcinoma (NPC) patients after radiotherapy (RT), 2) identify the most discriminating WM regions and WM connections as biomarkers of radiation brain injury (RBI), and 3) supplement the understanding of the pathogenesis of RBI, which is useful for early diagnosis in the clinic.MethodsA DTI scan was performed in 77 patients and 67 normal controls. A fractional anisotropy map was generated by DTIFit. TBSS was used to find the region where the FA differed between the case and control groups. Each resulting FA value image is registered with each other to create an average FA value skeleton. Each resultant FA skeleton image was connected to feature vectors, and features with significant differences were extracted and classified using a support vector machine (SVM). Next, brain segmentation was performed on each subject’s DTI image using automated anatomical labeling (AAL), and deterministic white matter fiber bundle tracking was performed to generate symmetrical brain matrix, select the upper triangular component as a classification feature. Two-sample t-test was used to extract the features with significant differences, then classified by SVM. Finally, we adopted a permutation test and ROC curves to evaluate the reliability of the classifier.ResultsFor FA, the accuracy of classification between the 0–6, 6–12 and > 12 months post-RT groups and the control group was 84.5, 83.9 and 74.5%, respectively. In the case groups, the FA with discriminative ability was reduced, mainly in the bilateral cerebellum and bilateral temporal lobe, with prolonged time, the damage was aggravated. For WM connections, the SVM classifier classification recognition rates of the 0–6, 6–12 and > 12 months post-RT groups reached 82.5, 78.4 and 76.3%, respectively. The WM connections with discriminative ability were reduced.ConclusionsRBI is a disease involving whole brain WM network anomalies. These brain discriminating WM regions and WM connection modes can supplement the understanding of RBI and be used as biomarkers for the early clinical diagnosis of RBI.
ObjectivesThe purpose of this study was to (1) explore the changes in topological properties of static and dynamic brain functional networks after nasopharyngeal carcinoma (NPC) radiotherapy (RT) using rs-fMRI and graph theoretical analysis, (2) explore the correlation between cognitive function and changes in brain function, and (3) add to the understanding of the pathogenesis of radiation brain injury (RBI).MethodsFifty-four patients were divided into 3 groups according to time after RT: PT1 (0–6 months); PT2 (>6 to ≤12 months); and PT3 (>12 months). 29 normal controls (NCs) were included. The subjects’ topological properties were evaluated by graph-theoretic network analysis, the functional connectivity of static functional networks was calculated using network-based statistics, and the dynamic functional network matrix was subjected to cluster analysis. Finally, correlation analyses were conducted to explore the relationship between the altered network parameters and cognitive function.ResultsAssortativity, hierarchy, and network efficiency were significantly abnormal in the PT1 group compared with the NC or PT3 group. The small-world variance in the PT3 group was smaller than that in NCs. The Nodal ClustCoeff of Postcentral_R in the PT2 group was significantly smaller than that in PT3 and NC groups. Functional connectivities were significantly reduced in the patient groups. Most of the functional connectivities of the middle temporal gyrus (MTG) were shown to be significantly reduced in all three patient groups. Most of the functional connectivities of the insula showed significantly reduced in the PT1 and PT3 groups, and most of the functional connectivities in brain regions such as frontal and parietal lobes showed significantly reduced in the PT2 and PT3 groups. These abnormal functional connectivities were correlated with scores on multiple scales that primarily assessed memory, executive ability, and overall cognitive function. The frequency F of occurrence of various states in each subject differed significantly, and the interaction effect of group and state was significant.ConclusionThe disruption of static and dynamic functional network stability, reduced network efficiency and reduced functional connectivity may be potential biomarkers of RBI. Our findings may provide new insights into the pathogenesis of RBI from the perspective of functional networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.