Hemoglobin is the major protein in red blood cells and transports oxygen from the lungs to oxygen-demanding tissues, like the brain. Mechanisms that facilitate the uptake of oxygen in the vertebrate brain are unknown. In invertebrates, neuronal hemoglobin serves as intracellular storage molecule for oxygen. Here, we show by immunohistochemistry that hemoglobin is specifically expressed in neurons of the cortex, hippocampus, and cerebellum of the rodent brain, but not in astrocytes and oligodendrocytes. The neuronal hemoglobin distribution is distinct from the neuroglobin expression pattern on both cellular and subcellular levels. Probing for low oxygen levels in the tissue, we provide evidence that hemoglobin a-positive cells in direct neighborhood with hemoglobin a-negative cells display a better oxygenation than their neighbors and can be sharply distinguished from those. Neuronal hemoglobin expression is upregulated by injection or transgenic overexpression of erythropoietin and is accompanied by enhanced brain oxygenation under physiologic and hypoxic conditions. Thus we provide a novel mechanism for the neuroprotective actions of erythropoietin under ischemic-hypoxic conditions. We propose that neuronal hemoglobin expression is connected to facilitated oxygen uptake in neurons, and hemoglobin might serve as oxygen capacitator molecule.
Activation of G-protein-coupled receptors (GPCRs) results in a variety of cellular responses, such as binding to the same receptor of different ligands that activate distinct downstream cascades. Additional signaling complexity is achieved when two or more receptors are integrated into one signaling unit. Lateral receptor interactions can allosterically modulate the receptor response to a ligand, which creates a mechanism for tissue-specific fine tuning, depending on the cellular receptor coexpression pattern. GPCR homomers or heteromers have been explored widely for GPCR classes A and C but to lesser extent for class B. In the present study, we used bioluminescence resonance energy transfer (BRET) techniques, calcium flux measurements, and microscopy to study receptor interactions within the glucagon receptor family. We found basal BRET interactions for some of the receptor combinations tested that decreased upon ligand binding. A BRET increase was observed exclusively for the gastric inhibitory peptide (GIP) receptor and the glucagon-like peptide 1 (GLP-1) receptor upon binding of GLP-1 that could be reversed with GIP addition. The interactions of GLP-1 receptor and GIP receptor were characterized with BRET donor saturation studies, shift experiments, and tests of glucagon-like ligands. The heteromer displayed specific pharmacological characteristics with respect to GLP-1-induced -arrestin recruitment and calcium flux, which suggests a form of allosteric regulation between the receptors. This study provides the first example of ligand-induced heteromer formation in GPCR class B. In the body, the receptors are functionally related and coexpressed in the same cells. The physiological evidence for this heteromerization remains to be determined.
On the basis of its inhibition by SB216763, we identified the multifunctional enzyme Glycogen Synthase Kinase 3β (GSK3β) as a central regulator for differentiation and cell survival of adult neural stem cells. Detected by proteomic approaches, members of the Wnt/β-catenin signaling pathway appear to participate in enhanced neuronal differentiation and activated transcription of β-catenin target genes during GSK3β inhibition, associated with decreased apoptosis. Keywords: Neural stem cell • Neurosphere • Glycogen Synthase Kinase 3β • Two-dimensional gel electrophoresis • Rat • Subventricular zone
The cause of brain dysfunction during sepsis and septic encephalopathy is still under ongoing research. Sepsis induced changes in cerebral protein expression may play a significant role in the understanding of septic encephalopathy. The aim of the present study was to explore cerebral proteome alterations in septic rats. Fifty-six male Wistar rats were randomly assigned to a sepsis group (coecal ligature and puncture, CLP) or a control group (sham). Surviving rats were killed 24 or 48 hours after surgery and whole-brain lysates were used for two-dimensional gel electrophoresis and subsequent protein identification. Differentially expressed proteins were identified by mass spectrometry. Using the Ingenuity Pathways Analysis (IPA) tool, the relationship and interaction between the identified proteins was analyzed. Mortality was 53 % in septic rats. No rat of the control group was lost. More than 1,100 spots per gel were discriminated of which 29 different proteins were significantly (2-fold, P<0.01) changed: 24 proteins down-regulated after 24 hours; two proteins up-regulated and three down-regulated after 48 hours. IPA identified 11 of 35 differentially regulated proteins allocating them to an existing inflammatory pathway. In the analysis of septic rat brains, multiple differentially expressed proteins associated with metabolism, signaling, and cell stress can be identified via proteome analysis, that may help to understand the development of septic encephalopathy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.