Optical property measurements on blood are influenced by a large variety of factors of both physical and methodological origin. The aim of this review is to list these factors of influence and to provide the reader with optical property spectra (250–2,500 nm) for whole blood that can be used in the practice of biomedical optics (tabulated in the appendix). Hereto, we perform a critical examination and selection of the available optical property spectra of blood in literature, from which we compile average spectra for the absorption coefficient (μa), scattering coefficient (μs) and scattering anisotropy (g). From this, we calculate the reduced scattering coefficient (μs′) and the effective attenuation coefficient (μeff). In the compilation of μa and μs, we incorporate the influences of absorption flattening and dependent scattering (i.e. spatial correlations between positions of red blood cells), respectively. For the influence of dependent scattering on μs, we present a novel, theoretically derived formula that can be used for practical rescaling of μs to other haematocrits. Since the measurement of the scattering properties of blood has been proven to be challenging, we apply an alternative, theoretical approach to calculate spectra for μs and g. Hereto, we combine Kramers–Kronig analysis with analytical scattering theory, extended with Percus–Yevick structure factors that take into account the effect of dependent scattering in whole blood. We argue that our calculated spectra may provide a better estimation for μs and g (and hence μs′ and μeff) than the compiled spectra from literature for wavelengths between 300 and 600 nm.
Abstract. From calibrated, weakly scattering tissue phantoms (2-6 mm -1 ), we extract the attenuation coefficient with an accuracy of 0.8 mm -1 from OCT data in the clinically relevant 'fixed focus' geometry. The data are analyzed using a single scattering model and a recently developed description of the confocal point spread function (PSF). We verify the validity of the single scattering model by a quantitative comparison with a multiple scattering model, and validate the use of the PSF on the calibrated samples. Implementation of this model for existing OCT systems will be straightforward. Localized quantitative measurement of the attenuation coefficient of different tissues can significantly improve the clinical value of OCT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.