We introduce a new method for camera-model identification. Our approach combines two independent aspects of video file generation corresponding to video coding and media data encapsulation. To this end, a joint representation of the overall file metadata is developed and used in conjunction with a two-level hierarchical classification method. At the first level, our method groups videos into metaclasses considering several abstractions that represent high-level structural properties of file metadata. This is followed by a more nuanced classification of classes that comprise each metaclass. The method is evaluated on more than 20K videos obtained by combining four public video datasets. Tests show that a balanced accuracy of 91% is achieved in correctly identifying the class of a video among 119 video classes. This corresponds to an improvement of 6.5% over the conventional approach based on video file encapsulation characteristics. Furthermore, we investigate a setting relevant to forensic file recovery operations where file metadata cannot be located or are missing but video data is partially available. By estimating a partial list of encoding parameters from coded video data, we demonstrate that an identification accuracy of 57% can be achieved in camera-model identification in the absence of any other file metadata.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.