Aims:The aim of this study is to determine the ability of two bioactive compounds, namely, eugenol and linalool, purified from leaves of Ocimum tenuiflorum for eradication of biofilm produced by Pseudomonas aeruginosa. Methods and Results: The phytoextract of O. tenuiflorum (KT), a common ethno-botanical plant of India, was purified through high-performance liquid chromatography and was analysed using ultraviolet (UV) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Eugenol and linalool were found to be the most active amongst all phytocompounds present in phytoextract and showed a significant reduction in the viability of sessile cells of P. aeruginosa and the minimum revival after withdrawal of phyto-challenge. They could bring about notable reduction in the protein and carbohydrate content of exopolysaccharide of biofilm. Eugenol and linalool could affect the synthesis of quorum sensing (QS) proteins like LasA and LasB as well as virulence factors such as pyocyanin, and rhamnolipids, which seriously hamper the formation of biofilm. The biofilm framework was extremely affected by the phytocompounds through the reduction of protein and carbohydrate content of extracellular polymeric substance (EPS). Another interesting found out was that they brought about maximum inhibition to the genomic DNA and RNA content. The studies were supported by in silico interaction between eugenol and linalool with the QS proteins. The antibiofilm efficacies of eugenol, linalool and phytoextract (KT) were further confirmed by microscopic studies with scanning electron microscopy (SEM), atomic force microscopy and fluorescence confocal microscopy microscopic studies. Conclusions: The phytocompounds are proved to be more effective than conventional antibiotics in inhibiting the biofilm forming sessile cells and can be used as a replacement for antibiotic. Significance and Impact of the Study: Pure eugenol extracted from common basil leaves can be used as a safe substitute for common antibiotic for treatment of chronic infections caused by P. aeruginosa. It will be cost effective, devoid of notable side effects and will not generate antibiotic resistance in host body.
The biggest challenge in the present-day healthcare scenario is the rapid emergence and spread of antimicrobial resistance due to the rampant use of antibiotics in daily therapeutics. Such drug resistance is associated with the enhancement of microbial virulence and the acquisition of the ability to evade the host’s immune response under the shelter of a biofilm. Quorum sensing (QS) is the mechanism by which the microbial colonies in a biofilm modulate and intercept communication without direct interaction. Hence, the eradication of biofilms through hindering this communication will lead to the successful management of drug resistance and may be a novel target for antimicrobial chemotherapy. Chitosan shows microbicidal activities by acting electrostatically with its positively charged amino groups, which interact with anionic moieties on microbial species, causing enhanced membrane permeability and eventual cell death. Therefore, nanoparticles (NPs) prepared with chitosan possess a positive surface charge and mucoadhesive properties that can adhere to microbial mucus membranes and release their drug load in a constant release manner. As the success in therapeutics depends on the targeted delivery of drugs, chitosan nanomaterial, which displays low toxicity, can be safely used for eradicating a biofilm through attenuating the quorum sensing (QS). Since the anti-biofilm potential of chitosan and its nano-derivatives are reported for various microorganisms, these can be used as attractive tools for combating chronic infections and for the preparation of functionalized nanomaterials for different medical devices, such as orthodontic appliances. This mini-review focuses on the mechanism of the downregulation of quorum sensing using functionalized chitosan nanomaterials and the future prospects of its applications.
Biofilm is a syntrophic association of sessile groups of microbial cells that adhere to biotic and abiotic surfaces with the help of pili and extracellular polymeric substances (EPS). EPSs also prevent penetration of antimicrobials/antibiotics into the sessile groups of cells. Hence, methods and agents to avoid or remove biofilms are urgently needed. Enzymes play important roles in the removal of biofilm in natural environments and may be promising agents for this purpose. As the major component of the EPS is polysaccharide, amylase has inhibited EPS by preventing the adherence of the microbial cells, thus making amylase a suitable antimicrobial agent. On the other hand, salivary amylase binds to amylase-binding protein of plaque-forming Streptococci and initiates the formation of biofilm. This review investigates the contradictory actions and microbe-associated genes of amylases, with emphasis on their structural and functional characteristics.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.