The centrifugal compressor has been widely used in low power gas turbine, supercharger and industrial turbine compressors. Due to its outstanding advantages of simple process, compact structure and wide working range, it is more advantageous in some aspects such as small flow range than counterparts. However, the design of important components of centrifugal compressor requires lots of design experience and consideration. Because of the deepening research of the industrial centrifugal compressor, some excellent design optimization methods and experiences are obtained from researchers. In order to enable designers to get the preliminary design parameters and to develop a compressor with better performance better and faster, this paper addresses the main design optimization methods and design experiences of the components of the industrial centrifugal compressor. The detailed design considerations and design process for centrifugal compressor can reduce the design cycle time without scarifying performance for the new design. The purpose of this paper is to provide some design considerations and experiences of the centrifugal compressor for researchers. According to the centrifugal compressor design optimization process, purposed considerations in this paper are useful for compressor preliminary parameters selections. The optimizations and design considerations in this paper provide a detailed reference document for future centrifugal compressor developments.
The performance of the high-pressure (HP) compressor is very important for the two-stage turbocharging system. However, the performance of HP compressor on the engine most of the time is poor at low speed and low mass flow conditions. These will lead to poor engine performance at low engine speed. The purpose of this paper is to improve the performance of the HP compressor at low speed and low mass flow conditions. The Latin hypercube design of the experiment method is used to establish the Kriging model and global optimization by multi-objective genetic algorithm NSGA-II to optimal HP compressor. The simulation results indicated that the flow field within the compressor was improved and the high entropy generation area was reduced. The new design delayed the mixing between the tip clearance leakage vortex flow and main flow. The low-speed performance of the HP compressor was improved. The turbocharger gas stand tests and engine bench tests were carried out. The results showed that the efficiency and pressure ratio of the optimized design is increased by 2.1% and 3%, respectively. The engine achieved better performance in low-speed conditions. The pumping means effective pressure (PMEP) and intake airflow increased by 7% and 4.98%, respectively, while brake specific fuel consumption (BSFC) and soot emissions decreased by 0.56% and 32.8%, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.