Nonalcoholic fatty liver disease (NAFLD) is a major cause of liver disease worldwide. We estimated the global prevalence, incidence, progression, and outcomes of NAFLD and nonalcoholic steatohepatitis (NASH). PubMed/MEDLINE were searched from 1989 to 2015 for terms involving epidemiology and progression of NAFLD. Exclusions included selected groups (studies that exclusively enrolled morbidly obese or diabetics or pediatric) and no data on alcohol consumption or other liver diseases. Incidence of hepatocellular carcinoma (HCC), cirrhosis, overall mortality, and liver-related mortality were determined. NASH required histological diagnosis. All studies were reviewed by three independent investigators. Analysis was stratified by region, diagnostic technique, biopsy indication, and study population. We used random-effects models to provide point estimates (95% confidence interval [CI]) of prevalence, incidence, mortality and incidence rate ratios, and metaregression with subgroup analysis to account for heterogeneity. Of 729 studies, 86 were included with a sample size of 8,515,431 from 22 countries. . Fibrosis progression proportion, and mean annual rate of progression in NASH were 40.76% (95% CI: 34.69-47.13) and 0.09 (95% CI: 0.06-0.12). HCC incidence among NAFLD patients was 0.44 per 1,000 person-years (range, 0.29-0.66). Liver-specific mortality and overall mortality among NAFLD and NASH were 0.77 per 1,000 (range, 0.33-1.77) and 11.77 per 1,000 person-years (range, 7.10-19.53) and 15.44 per 1,000 (range, 11.72-20.34) and 25.56 per 1,000 person-years (range, 6.29-103.80). Incidence risk ratios for liver-specific and overall mortality for NAFLD were 1.94 (range, 1.28-2.92) and 1.05 (range, 0.70-1.56). Conclusions: As the global epidemic of obesity fuels metabolic conditions, the clinical and economic burden of NAFLD will become enormous. (HEPATOLOGY 2016;64:73-84)
BackgroundHepatic expression of Sonic Hedgehog (SHH) is associated with Non-alcoholic fatty liver disease (NAFLD) and development of Non-alcoholic steatohepatitis (NASH). Hepatic SHH detection increases with the diagnosis of NASH. This pilot study was designed to confirm that staining for SHH is useful in NASH diagnosis and determine whether quantification of staining by computer assisted morphometry (CAM) can be used to assess severity of ballooning degeneration.MethodsSHH was detected by immunohistochemistry (IHC) on paraffin-embedded liver sections in subjects (N = 69) with biopsy proven NAFLD and no liver disease (control). Serum samples were also available for these subjects. Post-staining, a digitized image of the section was acquired and an area quantification algorithm was used to quantify the degree of SHH expression. Additionally, circulating M30, M65, and SHH were measured by ELISA.ResultsNotably, hepatic SHH expression correlated with histologic ballooning degeneration (rho = 0.62, p < 0.0001), steatosis grade (rho = 0.554, P < 0.001), Mallory-Denk bodies (rho = 0.54, P < 0.001), pericellular fibrosis (rho = 0.527, P < 0.001), and lymphocytic infiltration (rho = 0.435, P < 0.0002). Additionally, hepatic SHH expression correlated with circulating M65 (rho = 0.588, p < 0.0001), and circulating M30 (rho = 0.375, p = 0.001), as well as AST and ALT (rho = 0.43, p = 0.0004, and rho = 0.27, p = 0.03, respectively). Further, serum M30 was almost twice as high in NASH patients compared to non-NASH (539.1 ± 290.8 U/L vs. 287.6 ± 190.5 U/L; p = 0.0002), while M65 was almost three times higher in NASH patients compared to non-NASH (441.2 ± 464.2 U/L vs. 162.8 ± 353.1 U/L, P = 0.0006). Logistic modeling indicates hepatic SHH expression and presence of type 2 diabetes as independent predictors of advanced fibrosis (defined as portal and pericellular fibrosis > 2: OR = 1.986, p = 0.01, and OR = 3.280, p = 0.03, respectively).ConclusionThus, our findings show quantitation of SHH expression by CAM can provide a tool for quantifying changes in hepatocyte injury and assist in unambiguous staging/grading of NASH. Our study showed minimal interobserver variability using CAM based quantification. Once validated, CAM assessment of hepatic SHH could benefit clinical trials or long term outcomes studies of NASH subjects.
BackgroundNon-alcoholic steatohepatitis (NASH) is among the leading causes of liver disease worldwide. It is increasingly recognized that the phenotype of NASH may involve a number of different pathways, of which each could become important therapeutic targets. The aim of this study is to use high resolution mass spectrometry (MS) and phosphoproteomics techniques to assess the serum proteome and hepatic phosphoproteome in subjects with NASH-related fibrosis.MethodsSixty-seven biopsy-proven NAFLD subjects with frozen sera and liver tissue were included. Reverse phase protein microarray was used to quantify the phosphorylation of key signaling proteins in liver and nano-liquid chromatography (LC)-MS was used to sequence target biomarkers in the serum. An image analysis algorithm was used to quantify the percentage of collagen (% collagen) using computer-assisted morphometry. Using multiple regression models, serum proteomes and phosphorylated hepatic proteins that were independently (p ≤ 0.05) associated with advanced fibrosis (stage ≥ 2) and higher % collagen were assessed.ResultsPhosphorylated signaling pathways in the liver revealed that apoptosis signal-regulating kinase 1, mitogen-activated protein kinase (ASK1-MAPK pathway involving ASK1 S38 (p < 0.02) and p38 MAPK (p = 0.0002)) activated by the inflammatory cytokine interleukin (IL-10) (p < 0.001), were independently associated with higher % collagen. LC-MS data revealed that serum alpha-2 macroglobulin (α2M) (p = 0.0004) and coagulation factor V (p = 0.0127) were independently associated with higher % hepatic collagen.ConclusionsSimultaneous profiling of serum proteome and hepatic phosphoproteome reveals that the activation of ASK1 S38, p38 MAPK in the liver, and serum α2M and coagulation factor V are independently associated with hepatic collagen deposition in patients with NASH. These data suggest the role of these pathways in the pathogenesis of NASH-related fibrosis as a potential therapeutic target.Electronic supplementary materialThe online version of this article (10.1186/s12916-018-1136-1) contains supplementary material, which is available to authorized users.
Major histocompatibility complex class I-related chain A (MICA) is a highly polymorphic gene that modulates immune surveillance by binding to its receptor on natural killer cells, and its genetic polymorphisms have been associated with chronic immune-mediated diseases. The progressive form of nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), is characterized by accumulation of fat and inflammatory cells in the hepatic parenchyma, potentially leading to liver cell injury and fibrosis. To date, there are no data describing the potential role of MICA in the pathogenesis of NAFLD. Therefore, our aim was to assess the association between MICA polymorphism and NASH and its histologic features. A total of 134 subjects were included. DNA from patients with biopsy-proven NAFLD were genotyped using polymerase chain reaction-sequence-specific oligonucleotide for MICA alleles. Liver biopsies were assessed for histologic diagnosis of NASH and specific pathologic features, including stage of fibrosis and grade of inflammation. Multivariate analysis was performed to draw associations between MICA alleles and the different variables; P ≤ 0.05 was considered significant. Univariate analysis showed that MICA*011 (odds ratio [OR], 7.14; 95% confidence interval [CI], 1.24-41.0; P = 0.04) was associated with a higher risk for histologic NASH. Multivariate analysis showed that MICA*002 was independently associated with a lower risk for focal hepatocyte necrosis (OR, 0.24; 95% CI, 0.08-0.74; P = 0.013) and advanced fibrosis (OR, 0.11; 95% CI, 0.02-0.70; P = 0.019). MICA*017 was independently associated with a higher risk for lymphocyte-mediated inflammation (OR, 5.12; 95% CI, 1.12-23.5; P = 0.035). Conclusion: MICA alleles may be associated with NASH and its histologic features of inflammation and fibrosis. Additional research is required to investigate the potential role of MICA in increased risk or protection against NAFLD. (Hepatology Communications 2021;5:63-73).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.