A significant increase in the occurrence of red stripe (caused by Acidovorax avenae subsp. avenae) has been observed in the last decade in Argentina. Considering that no extensive sampling of the main sugarcane‐producing area in the country has been conducted to characterize the diversity and population structure of A. avenae subsp. avenae, molecular markers were employed to analyse 112 isolates from Tucumán. By using repetitive element polymorphism‐based polymerase chain reaction (rep‐PCR) almost all isolates were differentiated and grouped into 10 clusters, revealing a high genetic diversity. Using the amplified fragment length polymorphism (AFLP) technique, five pairs of isolates were discriminated that could not be distinguished with rep‐PCR. Cluster analysis showed no clear association between isolate clustering, sugarcane host genotype, crop age, type of tissue sampled, fertilization, or year of sampling. Linkage equilibrium analysis by using rep‐PCR data indicated that the population has some degree of clonality. Three housekeeping genes were also sequenced: ugpB and pilT sequences were highly similar to A. avenae subsp. avenae sequences from other Argentinian isolates, whereas the lepA sequence did not reveal significant similarity. An additional four housekeeping genes could not be amplified, suggesting the existence of differences in those regions. Subsequently, virulence of 14 A. avenae subsp. avenae isolates was evaluated under controlled conditions. Results showed a differential level of aggressiveness among the isolates on a resistant sugarcane variety. This study confirmed that rep‐PCR is an adequate tool for genetic analysis and population structure characterization in bacteria, and revealed both high genetic diversity and clonal population structure of A. avenae subsp. avenae in Tucumán, Argentina.
The red stripe disease caused by Acidovorax avenae subsp. avenae in sugarcane, has become a quite relevant issue in Argentina because of its high incidence in the sugarcane growing area. The resistance of host plants is the most promising method for controlling the disease. In that sense, the Estación Experimental Agroindustrial Obispo Colombres (EEAOC) has a Sugarcane Breeding Program, which generates new varieties with higher productivity and good sanitary behavior. The lack of an effective screening technique to select resistant sugarcane genotypes limits the cultivar selection process. To develop a practical and affordable method for achieving the expression of the red stripe disease, three available inoculation techniques were evaluated under controlled conditions over two sugarcane varieties, with a previously adjustment of soil composition and nutrition and relative humidity. They consisted in (i) scrubbing the leaf surface with a cotton ball soaked in the suspension of A. avenae subsp. avenae; and spraying inoculum under two conditions: (ii) leaves pre-treated with a refined sand scarification and (iii) leaves with no scarification. Fifteen plants were inoculated per cultivar and treatment according to a randomized protocol with three replicates and the severity of the disease was evaluated on a scale of 1- 9 according to the International Society of Sugarcane Technologists. The spray inoculation using a bacterial suspension of A. avenae subsp. avenae without abrasives was also field tested. These results contribute to sugarcane breeding programs, providing a tool to assess the resistance to red stripe of their materials, overcoming the lack of bacterial pressure or favorable conditions for the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.