Hexavalent chromium Cr(VI) is toxic and can be highly mobile in many aquifer systems. Redox reactions with naturally occurring minerals and organic compounds can reduce Cr(VI) to Cr(III), forming labile Cr(III) oxyhydroxide precipitates, which is a natural attenuation process. In fractured bedrock aquifers, reduction of Cr(VI) in the rock matrix can enhance attenuation beyond that from matrix diffusion only, and potentially reduce back diffusion if concentrations in fractures decline following source reduction via natural processes or engineered remediation. In this study, we develop an extraction method for labile Cr(III) precipitates from Cr(VI) reduction using 5% hydrogen peroxide (H 2 O 2 ). Combining Cr(III) extractions with an established sodium hydroxide (NaOH) method for determination of Cr(VI) concentrations in rock porewater, a measure of the labile Cr(III) and Cr(VI) fractions in geologic samples is achieved. The methods were applied to cores from a contaminated groundwater system in fractured porous bedrock in order to assess the effectiveness of natural attenuation and whether Cr(VI) mass that diffused into the bedrock matrix was undergoing reduction. Detailed vertical distributions display two depth intervals with corresponding elevated concentrations of Cr(VI) in the porewater and extractable total Cr. The correspondence of Cr(VI) and labile Cr(III) provides evidence for reduction of Cr(VI) contamination in the bedrock matrix. Mineralogical analysis suggests that Fe(II)-bearing minerals, chlorite and biotite are the most likely candidates for natural reductants. This study provides evidence for the natural attenuation of anthropogenic Cr(VI) contamination in the porewater of a fractured bedrock aquifer, and it outlines a quantitative method for evaluating the effectiveness of natural attenuation in groundwater systems.
field investigations and numerical modeling were conducted to evaluate transport and fate of chlorinated solvent contamination in a fractured sedimentary bedrock aquifer (sandstone/siltstone/mudstone) at a Superfund site in central New Jersey. Field investigations provided information on the fractured rock system hydrogeology, including hydraulic gradients, bulk hydraulic conductivity, fracture network, and rock matrix, and on depth discrete contaminant distribution in fractures (via groundwater sampling) and matrix (via detailed subsampling of continuous cores). The numerical modeling endeavor involved application of both an equivalent porous media (EPM) model for flow and a discrete fracture network (DFN) model for transport. This combination of complementary models, informed by appropriate field data, allowed a quantitative representation of the conceptual site model (CSM) to assess relative importance of various processes, and to examine efficacy of remedial alternatives. Modeling progressed in two stages: first a large-scale (20 km x 25 km domain) 3-D EPM flow model (MODFLOW) was used to evaluate the bulk groundwater flow system and contaminant transport pathways under historic and current aquifer stress conditions and current stresses. Then, results of the flow model informed a 2-D DFN transport model (FRACTRAN) to evaluate transport along a 1,000-m flowpath from the source represented as a 2-D vertical cross-section. The combined model results were used to interpret and estimate the current and potential future extent of rock matrix and aqueous-phase contaminant conditions and evaluate remedial strategies. Results of this study show strong effects of matrix diffusion and other processes on attenuating the plume such that future impacts on downgradient well fields under the hydraulic stresses modeled should be negligible. Results also showed futility of source remediation efforts in the fractured rock, and supported a technical impracticability (TI) waiver for the site. O Exhibit 3. Example of fractures observed in cores and acoustic televiewer (ATV) and inferred from the FLUTe liner transmissivity tests along with comparison of estimated fracture frequency (over 3-m intervals) and estimated apertures from transmissivity profiling at MW-16. Charles E. Williams, PE, CGWP, is a geological engineer/hydrogeologist with the Kansas City District of the US Army Corps of Engineers. He has nearly 30 years of environmental investigation/remediation experience in the private sector and state/federal government. He recently spent six months in Afghanistan assisting military drilling teams in exploring for and developing groundwater resources at bases.
This column reviews the general features of PHT3D Version 2, a reactive multicomponent transport model that couples the geochemical modeling software PHREEQC-2 (Parkhurst and Appelo 1999) with three-dimensional groundwater flow and transport simulators MODFLOW-2000 and MT3DMS (Zheng and Wang 1999). The original version of PHT3D was developed by Henning Prommer and Version 2 by Henning Prommer and Vincent Post (Prommer and Post 2010). More detailed information about PHT3D is available at the website http://www.pht3d.org.The review was conducted separately by two reviewers. This column is presented in two parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.